001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.demos;
031
032import java.io.File;
033import java.io.IOException;
034import java.util.Arrays;
035
036import org.openimaj.feature.FloatFV;
037import org.openimaj.feature.local.list.MemoryLocalFeatureList;
038import org.openimaj.image.feature.dense.gradient.dsift.FloatDSIFTKeypoint;
039import org.openimaj.image.feature.local.aggregate.FisherVector;
040import org.openimaj.math.matrix.algorithm.pca.PrincipalComponentAnalysis;
041import org.openimaj.math.matrix.algorithm.pca.ThinSvdPrincipalComponentAnalysis;
042import org.openimaj.math.statistics.distribution.DiagonalMultivariateGaussian;
043import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
044import org.openimaj.math.statistics.distribution.MultivariateGaussian;
045import org.openimaj.util.array.ArrayUtils;
046
047import Jama.Matrix;
048
049import com.jmatio.io.MatFileReader;
050import com.jmatio.io.MatFileWriter;
051import com.jmatio.types.MLArray;
052import com.jmatio.types.MLDouble;
053import com.jmatio.types.MLSingle;
054import com.jmatio.types.MLStructure;
055
056/**
057 * 
058 * @author Sina Samangooei (ss@ecs.soton.ac.uk)
059 */
060public class FVFWCheckPCAGMM {
061
062        private static final String GMM_MATLAB_FILE = "/Users/ss/Experiments/FVFW/data/gmm_512.mat";
063        private static final String PCA_MATLAB_FILE = "/Users/ss/Experiments/FVFW/data/PCA_64.mat";
064        private static final String[] FACE_DSIFTS = new String[] {
065                        "/Users/ss/Experiments/FVFW/data/Aaron_Eckhart_0001-pdfsift.bin"
066        };
067
068        public static void main(String[] args) throws IOException {
069                final MixtureOfGaussians mog = loadMoG(new File(GMM_MATLAB_FILE));
070                final PrincipalComponentAnalysis pca = loadPCA(new File(PCA_MATLAB_FILE));
071                final FisherVector<float[]> fisher = new FisherVector<float[]>(mog, true, true);
072                for (final String faceFile : FACE_DSIFTS) {
073                        final MemoryLocalFeatureList<FloatDSIFTKeypoint> loadDSIFT = MemoryLocalFeatureList.read(new File(faceFile),
074                                        FloatDSIFTKeypoint.class);
075                        projectPCA(loadDSIFT, pca);
076
077                        final FloatFV fvec = fisher.aggregate(loadDSIFT);
078                        System.out.println(String.format("%s: %s", faceFile, fvec));
079                        System.out.println("Writing...");
080
081                        final File out = new File(faceFile + ".fisher.mat");
082                        final MLArray data = toMLArray(fvec);
083                        new MatFileWriter(out, Arrays.asList(data));
084                }
085        }
086
087        private static MLArray toMLArray(FloatFV fvec) {
088                final MLDouble data = new MLDouble("fisherface", new int[] { fvec.values.length, 1 });
089                for (int i = 0; i < fvec.values.length; i++) {
090                        data.set((double) fvec.values[i], i, 0);
091                }
092                return data;
093        }
094
095        private static void projectPCA(
096                        MemoryLocalFeatureList<FloatDSIFTKeypoint> loadDSIFT,
097                        PrincipalComponentAnalysis pca)
098        {
099                for (final FloatDSIFTKeypoint kp : loadDSIFT) {
100                        kp.descriptor = ArrayUtils.convertToFloat(pca.project(ArrayUtils.convertToDouble(kp.descriptor)));
101                        final int nf = kp.descriptor.length;
102                        kp.descriptor = Arrays.copyOf(kp.descriptor, nf + 2);
103                        kp.descriptor[nf] = (kp.x / 125f) - 0.5f;
104                        kp.descriptor[nf + 1] = (kp.y / 160f) - 0.5f;
105                }
106                loadDSIFT.resetVecLength();
107        }
108
109        static class LoadedPCA extends ThinSvdPrincipalComponentAnalysis {
110
111                public LoadedPCA(Matrix basis, double[] mean) {
112                        super(basis.getRowDimension());
113                        this.basis = basis;
114                        this.mean = mean;
115                }
116
117        }
118
119        public static PrincipalComponentAnalysis loadPCA(File f) throws IOException {
120                final MatFileReader reader = new MatFileReader(f);
121                final MLSingle mean = (MLSingle) reader.getContent().get("mu");
122                final MLSingle eigvec = (MLSingle) reader.getContent().get("proj");
123                final Matrix basis = new Matrix(eigvec.getM(), eigvec.getN());
124                final double[] meand = new double[eigvec.getN()];
125                for (int j = 0; j < eigvec.getN(); j++) {
126                        // meand[i] = mean.get(i,0); ignore the means
127                        meand[j] = 0;
128                        for (int i = 0; i < eigvec.getM(); i++) {
129                                basis.set(i, j, eigvec.get(i, j));
130                        }
131                }
132                final PrincipalComponentAnalysis ret = new LoadedPCA(basis.transpose(), meand);
133                return ret;
134        }
135
136        public static MixtureOfGaussians loadMoG(File f) throws IOException {
137                final MatFileReader reader = new MatFileReader(f);
138                final MLStructure codebook = (MLStructure) reader.getContent().get("codebook");
139
140                final MLSingle mean = (MLSingle) codebook.getField("mean");
141                final MLSingle variance = (MLSingle) codebook.getField("variance");
142                final MLSingle coef = (MLSingle) codebook.getField("coef");
143
144                final int n_gaussians = mean.getN();
145                final int n_dims = mean.getM();
146
147                final MultivariateGaussian[] ret = new MultivariateGaussian[n_gaussians];
148                final double[] weights = new double[n_gaussians];
149                for (int i = 0; i < n_gaussians; i++) {
150                        weights[i] = coef.get(i, 0);
151                        final DiagonalMultivariateGaussian d = new DiagonalMultivariateGaussian(n_dims);
152                        for (int j = 0; j < n_dims; j++) {
153                                d.mean.set(0, j, mean.get(j, i));
154                                d.variance[j] = variance.get(j, i);
155                        }
156                        ret[i] = d;
157                }
158
159                return new MixtureOfGaussians(ret, weights);
160        }
161
162}