001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.demos;
031
032import java.io.File;
033import java.io.IOException;
034
035import org.openimaj.demos.FVFWDSift.DSFactory;
036import org.openimaj.feature.FloatFV;
037import org.openimaj.feature.local.list.LocalFeatureList;
038import org.openimaj.feature.local.list.MemoryLocalFeatureList;
039import org.openimaj.image.FImage;
040import org.openimaj.image.ImageUtilities;
041import org.openimaj.image.analysis.pyramid.SimplePyramid;
042import org.openimaj.image.feature.dense.gradient.dsift.ApproximateDenseSIFT;
043import org.openimaj.image.feature.dense.gradient.dsift.ByteDSIFTKeypoint;
044import org.openimaj.image.feature.dense.gradient.dsift.DenseSIFT;
045import org.openimaj.image.feature.dense.gradient.dsift.FloatDSIFTKeypoint;
046import org.openimaj.image.feature.local.aggregate.FisherVector;
047import org.openimaj.io.IOUtils;
048import org.openimaj.math.matrix.algorithm.pca.PrincipalComponentAnalysis;
049import org.openimaj.math.statistics.distribution.MixtureOfGaussians;
050import org.openimaj.util.array.ArrayUtils;
051import org.openimaj.util.function.Operation;
052import org.openimaj.util.parallel.Parallel;
053
054import scala.actors.threadpool.Arrays;
055
056public class FVFWFVEncodeMatlab {
057        /**
058         * @param args
059         * @throws IOException
060         */
061        @SuppressWarnings("unchecked")
062        public static void main(String[] args) throws IOException {
063                final MixtureOfGaussians gmm = FVFWCheckPCAGMM.loadMoG(new File(
064                                "/Users/jon/Downloads/data/lfw_aligned/SIFT_1pix_PCA64_GMM512/codebooks/1/gmm_512.mat"));
065                final PrincipalComponentAnalysis pca = FVFWCheckPCAGMM.loadPCA(new File(
066                                "/Users/jon/Downloads/data/lfw_aligned/SIFT_1pix_PCA64_GMM512/codebooks/1/PCA_64.mat"));
067
068                final FisherVector<float[]> fisher = new FisherVector<float[]>(gmm, true, true);
069
070                final DSFactory factory = new DSFactory() {
071                        @Override
072                        public DenseSIFT create() {
073                                return new ApproximateDenseSIFT(1, 6);
074                        }
075                };
076
077                final File indir = new File("/Volumes/Raid/face_databases/lfw-centre-affine-matlab/");
078                final File outdir = new File("/Volumes/Raid/face_databases/lfw-centre-affine-matlab-fisher/");
079
080                Parallel.forEach(Arrays.asList(indir.listFiles()), new Operation<File>() {
081                        @Override
082                        public void perform(File dir) {
083                                if (dir.isDirectory()) {
084                                        final DenseSIFT sift = factory.create();
085
086                                        for (final File f : dir.listFiles()) {
087                                                if (f.getName().endsWith(".jpg")) {
088                                                        try {
089                                                                final File outfile = new File(outdir, f.getAbsolutePath().replace(
090                                                                                indir.getAbsolutePath(), "").replace(".jpg", ".bin"));
091                                                                outfile.getParentFile().mkdirs();
092
093                                                                if (outfile.exists())
094                                                                        continue;
095
096                                                                System.out.println(f);
097
098                                                                final LocalFeatureList<FloatDSIFTKeypoint> features = computeFeatures(f, pca, sift);
099
100                                                                final FloatFV fv = fisher.aggregate(features);
101                                                                IOUtils.writeBinary(outfile, fv);
102                                                        } catch (final Exception e) {
103                                                                e.printStackTrace();
104                                                        }
105                                                }
106                                        }
107                                }
108                        }
109
110                        private LocalFeatureList<FloatDSIFTKeypoint> computeFeatures(File f, PrincipalComponentAnalysis pca,
111                                        DenseSIFT sift) throws IOException
112                        {
113                                final FImage image = ImageUtilities.readF(f);
114
115                                final SimplePyramid<FImage> pyr = new SimplePyramid<FImage>((float) Math.sqrt(2), 5);
116                                pyr.processImage(image);
117
118                                final LocalFeatureList<FloatDSIFTKeypoint> allKeys = new MemoryLocalFeatureList<FloatDSIFTKeypoint>();
119                                for (final FImage img : pyr) {
120                                        sift.analyseImage(img);
121
122                                        final double scale = 160.0 / img.height;
123                                        final LocalFeatureList<ByteDSIFTKeypoint> kps = sift.getByteKeypoints();
124                                        for (final ByteDSIFTKeypoint kp : kps) {
125                                                kp.x = (float) ((kp.x + 1) * scale);
126                                                kp.y = (float) ((kp.y + 1) * scale);
127
128                                                float[] descriptor = new float[128];
129                                                float sumsq = 0;
130
131                                                // reorder to make comparision with matlab
132                                                // easier; add offset
133                                                for (int i = 0; i < 16; i++) {
134                                                        descriptor[i * 8] = kp.descriptor[i * 8] + 128;
135                                                        descriptor[i * 8 + 1] = kp.descriptor[i * 8 + 7] + 128;
136                                                        descriptor[i * 8 + 2] = kp.descriptor[i * 8 + 6] + 128;
137                                                        descriptor[i * 8 + 3] = kp.descriptor[i * 8 + 5] + 128;
138                                                        descriptor[i * 8 + 4] = kp.descriptor[i * 8 + 4] + 128;
139                                                        descriptor[i * 8 + 5] = kp.descriptor[i * 8 + 3] + 128;
140                                                        descriptor[i * 8 + 6] = kp.descriptor[i * 8 + 2] + 128;
141                                                        descriptor[i * 8 + 7] = kp.descriptor[i * 8 + 1] + 128;
142                                                }
143                                                // rootsift
144                                                for (int i = 0; i < 128; i++) {
145                                                        descriptor[i] = (float) Math.sqrt(descriptor[i]);
146                                                        sumsq += descriptor[i] * descriptor[i];
147                                                }
148                                                sumsq = (float) Math.sqrt(sumsq);
149                                                final float norm = 1f / Math.max(Float.MIN_NORMAL, sumsq);
150                                                for (int i = 0; i < 128; i++) {
151                                                        descriptor[i] *= norm;
152                                                }
153
154                                                // PCA
155                                                descriptor = ArrayUtils.convertToFloat(pca.project(ArrayUtils.convertToDouble(descriptor)));
156
157                                                // Augment
158                                                final int nf = descriptor.length;
159                                                descriptor = Arrays.copyOf(descriptor, nf + 2);
160                                                descriptor[nf] = (kp.x / 125f) - 0.5f;
161                                                descriptor[nf + 1] = (kp.y / 160f) - 0.5f;
162
163                                                allKeys.add(new FloatDSIFTKeypoint(kp.x, kp.y, descriptor, kp.energy));
164                                        }
165                                }
166                                return allKeys;
167                        }
168
169                });
170
171                FVFWExperiment.main(null);
172        }
173}