001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.demos; 031 032import java.io.File; 033import java.io.IOException; 034import java.util.ArrayList; 035import java.util.Collections; 036import java.util.List; 037 038import org.openimaj.feature.local.list.MemoryLocalFeatureList; 039import org.openimaj.image.feature.local.aggregate.FisherVector; 040import org.openimaj.image.feature.local.keypoints.FloatKeypoint; 041import org.openimaj.image.feature.local.keypoints.Keypoint; 042import org.openimaj.math.matrix.algorithm.pca.ThinSvdPrincipalComponentAnalysis; 043import org.openimaj.math.statistics.distribution.MixtureOfGaussians; 044import org.openimaj.ml.gmm.GaussianMixtureModelEM; 045import org.openimaj.ml.gmm.GaussianMixtureModelEM.CovarianceType; 046import org.openimaj.util.array.ArrayUtils; 047 048import Jama.Matrix; 049 050public class FisherTesting { 051 public static void main(String[] args) throws IOException { 052 final List<MemoryLocalFeatureList<FloatKeypoint>> data = new ArrayList<MemoryLocalFeatureList<FloatKeypoint>>(); 053 final List<FloatKeypoint> allKeys = new ArrayList<FloatKeypoint>(); 054 055 for (int i = 0; i < 100; i++) { 056 final MemoryLocalFeatureList<FloatKeypoint> tmp = FloatKeypoint.convert(MemoryLocalFeatureList.read( 057 new File(String.format("/Users/jsh2/Data/ukbench/sift/ukbench%05d.jpg", i)), Keypoint.class)); 058 data.add(tmp); 059 allKeys.addAll(tmp); 060 } 061 062 Collections.shuffle(allKeys); 063 064 final double[][] sample128 = new double[1000][]; 065 for (int i = 0; i < sample128.length; i++) { 066 sample128[i] = ArrayUtils.convertToDouble(allKeys.get(i).vector); 067 } 068 069 System.out.println("Performing PCA " + sample128.length); 070 final ThinSvdPrincipalComponentAnalysis pca = new ThinSvdPrincipalComponentAnalysis(64); 071 pca.learnBasis(sample128); 072 final double[][] sample64 = pca.project(new Matrix(sample128)).getArray(); 073 074 System.out.println("Projecting features"); 075 for (final MemoryLocalFeatureList<FloatKeypoint> kpl : data) { 076 for (final FloatKeypoint kp : kpl) { 077 kp.vector = ArrayUtils.convertToFloat(pca.project(ArrayUtils.convertToDouble(kp.vector))); 078 } 079 } 080 081 System.out.println("Learning GMM " + sample64.length); 082 final GaussianMixtureModelEM gmmem = new GaussianMixtureModelEM(512, CovarianceType.Diagonal); 083 final MixtureOfGaussians gmm = gmmem.estimate(sample64); 084 085 final double[][] v1 = gmm.logProbability(new double[][] { sample64[0] }); 086 final double[][] v2 = MixtureOfGaussians.logProbability(new double[][] { sample64[0] }, gmm.gaussians); 087 088 System.out.println("Done"); 089 090 // for (int i = 0; i < 512; i++) { 091 // System.out.println(gmm.gaussians[i].getMean().get(0, 0) + "," + 092 // gmm.gaussians[i].getMean().get(0, 1)); 093 // } 094 095 final FisherVector<float[]> fisher = new FisherVector<float[]>(gmm, true, true); 096 097 final List<FloatKeypoint> kpl = allKeys.subList(0, 26000); 098 final long t1 = System.currentTimeMillis(); 099 fisher.aggregate(kpl).asDoubleVector(); 100 final long t2 = System.currentTimeMillis(); 101 System.out.println(t2 - t1); 102 103 // int i = 0; 104 // final double[][] fvs = new double[5][]; 105 // for (final MemoryLocalFeatureList<FloatKeypoint> kpl : data) { 106 // final long t1 = System.currentTimeMillis(); 107 // fvs[i++] = fisher.aggregate(kpl).asDoubleVector(); 108 // final long t2 = System.currentTimeMillis(); 109 // System.out.println(t2 - t1); 110 // 111 // if (i == 5) 112 // break; 113 // } 114 // 115 // final ThinSvdPrincipalComponentAnalysis pca2 = new 116 // ThinSvdPrincipalComponentAnalysis(128); 117 // pca2.learnBasis(fvs); 118 } 119}