001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.docs.tutorial.adv.faces.eigen; 031 032import java.io.IOException; 033import java.util.ArrayList; 034import java.util.HashMap; 035import java.util.List; 036import java.util.Map; 037 038import org.openimaj.data.dataset.GroupedDataset; 039import org.openimaj.data.dataset.ListDataset; 040import org.openimaj.data.dataset.VFSGroupDataset; 041import org.openimaj.experiment.dataset.split.GroupedRandomSplitter; 042import org.openimaj.experiment.dataset.util.DatasetAdaptors; 043import org.openimaj.feature.DoubleFV; 044import org.openimaj.feature.DoubleFVComparison; 045import org.openimaj.image.DisplayUtilities; 046import org.openimaj.image.FImage; 047import org.openimaj.image.ImageUtilities; 048import org.openimaj.image.model.EigenImages; 049 050/** 051 * OpenIMAJ Hello world! 052 * 053 */ 054public class App { 055 /** 056 * Main method 057 * 058 * @param args 059 * @throws IOException 060 */ 061 public static void main(String[] args) throws IOException { 062 /* 063 * Load the data, and create some training and test data 064 */ 065 final VFSGroupDataset<FImage> dataset = 066 new VFSGroupDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip", 067 ImageUtilities.FIMAGE_READER); 068 069 final GroupedRandomSplitter<String, FImage> splits = new GroupedRandomSplitter<String, FImage>(dataset, 5, 0, 5); 070 final GroupedDataset<String, ListDataset<FImage>, FImage> training = splits.getTrainingDataset(); 071 final GroupedDataset<String, ListDataset<FImage>, FImage> testing = splits.getTestDataset(); 072 073 /* 074 * Now learn the PCA basis 075 */ 076 final List<FImage> basisImages = DatasetAdaptors.asList(training); 077 final int nEigenvectors = 100; 078 final EigenImages eigen = new EigenImages(nEigenvectors); 079 eigen.train(basisImages); 080 081 /* 082 * Display the top 12 eigenimages 083 */ 084 final List<FImage> eigenFaces = new ArrayList<FImage>(); 085 for (int i = 0; i < 12; i++) { 086 eigenFaces.add(eigen.visualisePC(i)); 087 } 088 DisplayUtilities.display("EigenFaces", eigenFaces); 089 090 /* 091 * Build a map of person->[features] for all the training data 092 */ 093 final Map<String, DoubleFV[]> features = new HashMap<String, DoubleFV[]>(); 094 for (final String person : training.getGroups()) { 095 final DoubleFV[] fvs = new DoubleFV[5]; 096 097 for (int i = 0; i < 5; i++) { 098 final FImage face = training.get(person).get(i); 099 fvs[i] = eigen.extractFeature(face); 100 } 101 features.put(person, fvs); 102 } 103 104 /* 105 * Now we can test our performance on the test set 106 */ 107 double correct = 0, incorrect = 0; 108 for (final String truePerson : testing.getGroups()) { 109 for (final FImage face : testing.get(truePerson)) { 110 final DoubleFV testFeature = eigen.extractFeature(face); 111 112 String bestPerson = null; 113 double minDistance = Double.MAX_VALUE; 114 for (final String person : features.keySet()) { 115 for (final DoubleFV fv : features.get(person)) { 116 final double distance = fv.compare(testFeature, DoubleFVComparison.EUCLIDEAN); 117 118 if (distance < minDistance) { 119 minDistance = distance; 120 bestPerson = person; 121 } 122 } 123 } 124 125 System.out.println("Actual: " + truePerson + "\tguess: " + bestPerson); 126 127 if (truePerson.equals(bestPerson)) 128 correct++; 129 else 130 incorrect++; 131 } 132 } 133 134 System.out.println("Accuracy: " + (correct / (correct + incorrect))); 135 } 136}