001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.docs.tutorial.adv.faces.pipeeigen; 031 032import java.io.IOException; 033 034import org.openimaj.data.dataset.GroupedDataset; 035import org.openimaj.data.dataset.ListDataset; 036import org.openimaj.data.dataset.VFSGroupDataset; 037import org.openimaj.experiment.dataset.split.GroupedRandomSplitter; 038import org.openimaj.feature.DoubleFVComparison; 039import org.openimaj.image.FImage; 040import org.openimaj.image.ImageUtilities; 041import org.openimaj.image.processing.face.alignment.FaceAligner; 042import org.openimaj.image.processing.face.alignment.IdentityAligner; 043import org.openimaj.image.processing.face.detection.DetectedFace; 044import org.openimaj.image.processing.face.detection.FaceDetector; 045import org.openimaj.image.processing.face.detection.IdentityFaceDetector; 046import org.openimaj.image.processing.face.recognition.EigenFaceRecogniser; 047import org.openimaj.image.processing.face.recognition.FaceRecognitionEngine; 048 049/** 050 * OpenIMAJ Hello world! 051 * 052 */ 053public class App { 054 /** 055 * Main method 056 * 057 * @param args 058 * @throws IOException 059 */ 060 public static void main(String[] args) throws IOException { 061 /* 062 * Load the data, and create some training and test data 063 */ 064 final VFSGroupDataset<FImage> dataset = 065 new VFSGroupDataset<FImage>("zip:http://datasets.openimaj.org/att_faces.zip", 066 ImageUtilities.FIMAGE_READER); 067 068 final GroupedRandomSplitter<String, FImage> splits = new GroupedRandomSplitter<String, FImage>(dataset, 5, 0, 5); 069 final GroupedDataset<String, ListDataset<FImage>, FImage> training = splits.getTrainingDataset(); 070 final GroupedDataset<String, ListDataset<FImage>, FImage> testing = splits.getTestDataset(); 071 072 /* 073 * Configure recogniser 074 */ 075 final FaceAligner<DetectedFace> aligner = new IdentityAligner<DetectedFace>(); 076 final FaceDetector<DetectedFace, FImage> detector = new IdentityFaceDetector<FImage>(); 077 078 final EigenFaceRecogniser<DetectedFace, String> recogniser = 079 EigenFaceRecogniser.create(100, aligner, 1, DoubleFVComparison.EUCLIDEAN); 080 081 final FaceRecognitionEngine<DetectedFace, String> engine = 082 new FaceRecognitionEngine<DetectedFace, String>(detector, recogniser); 083 084 /* 085 * Train 086 */ 087 engine.train(training); 088 089 /* 090 * Now we can test our performance on the test set 091 */ 092 double correct = 0, incorrect = 0; 093 for (final String truePerson : testing.getGroups()) { 094 for (final FImage face : testing.get(truePerson)) { 095 System.out.println(engine.recogniseBest(face)); 096 final String bestPerson = engine.recogniseBest(face).get(0).secondObject().annotation; 097 098 System.out.println("Actual: " + truePerson + "\tguess: " + bestPerson); 099 100 if (truePerson.equals(bestPerson)) 101 correct++; 102 else 103 incorrect++; 104 } 105 } 106 107 System.out.println("Accuracy: " + (correct / (correct + incorrect))); 108 } 109}