001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.dataset.sampling; 031 032import java.util.ArrayList; 033import java.util.Collections; 034import java.util.List; 035 036import org.openimaj.data.dataset.GroupedDataset; 037import org.openimaj.data.dataset.ListDataset; 038import org.openimaj.data.dataset.MapBackedDataset; 039 040/** 041 * Sampler that samples whole groups from a {@link GroupedDataset}. Groups are 042 * either selected randomly or from the first ones returned by the iterator over 043 * the dataset keys. 044 * 045 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 046 * 047 * @param <KEY> 048 * Type of groups 049 * @param <INSTANCE> 050 * Type of instances 051 */ 052public class GroupSampler<KEY, INSTANCE> 053 implements 054 Sampler<GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE>> 055{ 056 int numGroups; 057 boolean random; 058 059 /** 060 * Construct the sample to extract the given number of groups, either 061 * randomly or by taking them in the order provided by the iterator of 062 * groups. 063 * 064 * @param numGroups 065 * the number of groups 066 * @param random 067 * should the sample groups be chosen randomly? 068 */ 069 public GroupSampler(int numGroups, boolean random) { 070 this.numGroups = numGroups; 071 this.random = random; 072 } 073 074 @Override 075 public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> sample( 076 GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE> dataset) 077 { 078 final MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> sample = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 079 080 final List<KEY> keys = new ArrayList<KEY>(dataset.getGroups()); 081 if (random) { 082 Collections.shuffle(keys); 083 } 084 085 for (int i = 0; i < numGroups; i++) { 086 final KEY key = keys.get(i); 087 sample.add(key, dataset.get(key)); 088 } 089 090 return sample; 091 } 092 093 /** 094 * Sample a dataset with the given number of groups to select. Groups are 095 * either selected randomly or from the first ones returned by the iterator 096 * over the dataset keys. 097 * 098 * @param dataset 099 * the dataset to sample 100 * @param numGroups 101 * the number of groups 102 * @param random 103 * should the sample groups be chosen randomly? 104 * @return the sampled dataset 105 */ 106 public static <KEY, INSTANCE> GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> sample( 107 GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE> dataset, int numGroups, 108 boolean random) 109 { 110 return new GroupSampler<KEY, INSTANCE>(numGroups, random).sample(dataset); 111 } 112}