001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.dataset.sampling; 031 032import java.util.List; 033import java.util.Map; 034 035import org.openimaj.data.RandomData; 036import org.openimaj.data.dataset.GroupedDataset; 037import org.openimaj.data.dataset.ListBackedDataset; 038import org.openimaj.data.dataset.ListDataset; 039import org.openimaj.data.dataset.MapBackedDataset; 040import org.openimaj.experiment.dataset.util.DatasetAdaptors; 041import org.openimaj.util.list.AcceptingListView; 042import org.openimaj.util.list.SkippingListView; 043 044/** 045 * A stratified uniformly random sampling scheme for grouped datasets. Both 046 * sampling with and without replacement are supported. The sampler returns a 047 * dataset that selects a predefined fraction of the input data. Specifically, 048 * the given percentage of data is selected from each group independently, thus 049 * ensuring that the distribution of relative group sizes before and after 050 * sampling remains (approximately) constant. 051 * 052 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 053 * 054 * @param <KEY> 055 * Type of groups 056 * @param <INSTANCE> 057 * Type of instances 058 */ 059public class StratifiedGroupedUniformRandomisedSampler<KEY, INSTANCE> 060 implements 061 Sampler<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>> 062{ 063 private boolean withReplacement = false; 064 065 // this is overloaded to hold either a percentage or number of instances. 066 // Percentages are stored in the range 0..1; numbers are stored as -number. 067 private double percentage; 068 069 /** 070 * Construct a {@link StratifiedGroupedUniformRandomisedSampler} 071 * with the given percentage of instances to select. By default, the 072 * sampling is without replacement (i.e. an instance can only be selected 073 * once). 074 * 075 * @param percentage 076 * percentage of instances to select 077 */ 078 public StratifiedGroupedUniformRandomisedSampler(double percentage) { 079 if (percentage < 0 || percentage > 1) 080 throw new IllegalArgumentException("percentage of sample instances must be between 0 and 1"); 081 082 this.percentage = percentage; 083 } 084 085 /** 086 * Construct a {@link StratifiedGroupedUniformRandomisedSampler} 087 * with the given percentage of instances to select, using with 088 * with-replacement or without-replacement sampling. 089 * 090 * @param percentage 091 * percentage of instances to select 092 * @param withReplacement 093 * should the sampling be performed with replacement (true); or 094 * without replacement (false). 095 */ 096 public StratifiedGroupedUniformRandomisedSampler( 097 double percentage, boolean withReplacement) 098 { 099 this(percentage); 100 this.withReplacement = withReplacement; 101 } 102 103 /** 104 * Construct a {@link StratifiedGroupedUniformRandomisedSampler} 105 * with the given number of instances to select. By default, the sampling is 106 * without replacement (i.e. an instance can only be selected once). 107 * 108 * @param number 109 * number of instances to select 110 */ 111 public StratifiedGroupedUniformRandomisedSampler(int number) { 112 if (number < 1) 113 throw new IllegalArgumentException("number of sample instances must be greater than 1"); 114 115 this.percentage = -number; 116 } 117 118 /** 119 * Construct a {@link StratifiedGroupedUniformRandomisedSampler} 120 * with the given number of instances to select, using with with-replacement 121 * or without-replacement sampling. 122 * 123 * @param number 124 * number of instances to select 125 * @param withReplacement 126 * should the sampling be performed with replacement (true); or 127 * without replacement (false). 128 */ 129 public StratifiedGroupedUniformRandomisedSampler( 130 int number, boolean withReplacement) 131 { 132 this(number); 133 this.withReplacement = withReplacement; 134 } 135 136 @Override 137 public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> sample( 138 GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> dataset) 139 { 140 final MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> sample = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 141 final Map<KEY, ListDataset<INSTANCE>> map = sample.getMap(); 142 143 for (final KEY key : dataset.getGroups()) { 144 final List<INSTANCE> list = DatasetAdaptors.asList(dataset 145 .getInstances(key)); 146 final int size = list.size(); 147 148 final boolean skip; 149 final int N; 150 if (percentage >= 0) { 151 // if we want more than 50%, it's better to select 1-percentage 152 // indexes to skip 153 skip = percentage > 0.5; 154 final double per = skip ? 1.0 - percentage : percentage; 155 156 N = (int) Math.round(size * per); 157 } else { 158 N = (int) -percentage; 159 skip = N > (size / 2); 160 } 161 162 int[] selectedIds; 163 if (withReplacement) { 164 selectedIds = RandomData.getRandomIntArray(N, 0, size); 165 } else { 166 selectedIds = RandomData.getUniqueRandomInts(N, 0, size); 167 } 168 169 if (!skip) { 170 map.put(key, new ListBackedDataset<INSTANCE>( 171 new AcceptingListView<INSTANCE>(list, selectedIds))); 172 } else { 173 map.put(key, new ListBackedDataset<INSTANCE>( 174 new SkippingListView<INSTANCE>(list, selectedIds))); 175 } 176 } 177 178 return sample; 179 } 180}