001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.experiment.dataset.split;
031
032import java.util.Iterator;
033import java.util.Map.Entry;
034
035import org.openimaj.data.RandomData;
036import org.openimaj.data.dataset.GroupedDataset;
037import org.openimaj.data.dataset.ListBackedDataset;
038import org.openimaj.data.dataset.ListDataset;
039import org.openimaj.data.dataset.MapBackedDataset;
040import org.openimaj.experiment.validation.ValidationData;
041import org.openimaj.experiment.validation.cross.CrossValidationIterable;
042
043/**
044 * This class splits a {@link GroupedDataset} into subsets for training,
045 * validation and testing. The number of instances required for each subset can
046 * be chosen independently. Instances are assigned to subsets randomly without
047 * replacement within the groups.
048 * <p>
049 * The {@link GroupedRandomSplitter} class allows the splits to be recomputed at
050 * any time. This makes it easy to generate new splits (for cross-validation for
051 * example). There are static methods to simplify the generation of such data.
052 * 
053 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
054 * 
055 * @param <KEY>
056 *            Type of dataset class key
057 * @param <INSTANCE>
058 *            Type of instances in the dataset
059 */
060public class GroupedRandomSplitter<KEY, INSTANCE>
061                implements
062                TrainSplitProvider<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>,
063                TestSplitProvider<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>,
064                ValidateSplitProvider<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>
065{
066        private GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE> dataset;
067        private GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> trainingSplit;
068        private GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> validationSplit;
069        private GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> testingSplit;
070        private int numTraining;
071        private int numValidation;
072        private int numTesting;
073
074        /**
075         * Construct the dataset splitter with the given target instance sizes for
076         * each group of the training, validation and testing data. The actual
077         * number of instances per subset and group will not necessarily be the
078         * specified number if there are not enough instances in the input dataset.
079         * Instances are assigned randomly with preference to the training set
080         * followed by the validation set. If, for example, you had 40 instances in
081         * a group of the input dataset and requested a training size of 20,
082         * validation size of 15 and testing size of 10, then your actual testing
083         * set would only have 5 instances rather than the 10 requested. If any
084         * subset will end up having no instances of a particular group available an
085         * exception will be thrown.
086         * 
087         * @param dataset
088         *            the dataset to split
089         * @param numTraining
090         *            the number of training instances per group
091         * @param numValidation
092         *            the number of validation instances per group
093         * @param numTesting
094         *            the number of testing instances per group
095         */
096        public GroupedRandomSplitter(GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE> dataset, int numTraining,
097                        int numValidation,
098                        int numTesting)
099        {
100                this.dataset = dataset;
101                this.numTraining = numTraining;
102                this.numValidation = numValidation;
103                this.numTesting = numTesting;
104
105                recomputeSubsets();
106        }
107
108        /**
109         * Recompute the underlying splits of the training, validation and testing
110         * data by randomly picking new subsets of the input dataset given in the
111         * constructor.
112         */
113        public void recomputeSubsets() {
114                trainingSplit = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>();
115                validationSplit = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>();
116                testingSplit = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>();
117
118                for (final Entry<KEY, ? extends ListDataset<INSTANCE>> e : dataset.entrySet()) {
119                        final KEY key = e.getKey();
120                        final ListDataset<INSTANCE> allData = e.getValue();
121
122                        if (allData.size() < numTraining + 1)
123                                throw new RuntimeException(
124                                                "Too many training examples; none would be available for validation or testing.");
125
126                        if (allData.size() < numTraining + numValidation + 1)
127                                throw new RuntimeException(
128                                                "Too many training and validation instances; none would be available for testing.");
129
130                        final int[] ids = RandomData.getUniqueRandomInts(
131                                        Math.min(numTraining + numValidation + numTesting, allData.size()), 0,
132                                        allData.size());
133
134                        final ListDataset<INSTANCE> train = new ListBackedDataset<INSTANCE>();
135                        for (int i = 0; i < numTraining; i++) {
136                                train.add(allData.get(ids[i]));
137                        }
138                        trainingSplit.put(key, train);
139
140                        final ListDataset<INSTANCE> valid = new ListBackedDataset<INSTANCE>();
141                        for (int i = numTraining; i < numTraining + numValidation; i++) {
142                                valid.add(allData.get(ids[i]));
143                        }
144                        validationSplit.put(key, valid);
145
146                        final ListDataset<INSTANCE> test = new ListBackedDataset<INSTANCE>();
147                        for (int i = numTraining + numValidation; i < ids.length; i++) {
148                                test.add(allData.get(ids[i]));
149                        }
150                        testingSplit.put(key, test);
151                }
152        }
153
154        @Override
155        public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> getTestDataset() {
156                return testingSplit;
157        }
158
159        @Override
160        public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> getTrainingDataset() {
161                return trainingSplit;
162        }
163
164        @Override
165        public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> getValidationDataset() {
166                return validationSplit;
167        }
168
169        /**
170         * Create a {@link CrossValidationIterable} from the dataset. Internally,
171         * this method creates a {@link GroupedRandomSplitter} to split the dataset
172         * into subsets of the requested size (with no test instances) and then
173         * produces an {@link CrossValidationIterable} that recomputes the subsets
174         * on each iteration through {@link #recomputeSubsets()}.
175         * 
176         * @param dataset
177         *            the dataset to split
178         * @param numTraining
179         *            the number of training instances per group
180         * @param numValidation
181         *            the number of validation instances per group
182         * @param numIterations
183         *            the number of cross-validation iterations to create
184         * @return the cross-validation datasets in the form of a
185         *         {@link CrossValidationIterable}
186         * 
187         * @param <KEY>
188         *            Type of dataset class key
189         * @param <INSTANCE>
190         *            Type of instances in the dataset
191         */
192        public static <KEY, INSTANCE> CrossValidationIterable<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>
193                        createCrossValidationData(final GroupedDataset<KEY, ? extends ListDataset<INSTANCE>, INSTANCE> dataset,
194                                        final int numTraining, final int numValidation, final int numIterations)
195        {
196                return new CrossValidationIterable<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>() {
197                        private GroupedRandomSplitter<KEY, INSTANCE> splits = new GroupedRandomSplitter<KEY, INSTANCE>(dataset,
198                                        numTraining, numValidation, 0);
199
200                        @Override
201                        public Iterator<ValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>> iterator() {
202                                return new Iterator<ValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>>() {
203                                        int current = 0;
204
205                                        @Override
206                                        public boolean hasNext() {
207                                                return current < numIterations;
208                                        }
209
210                                        @Override
211                                        public ValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>> next() {
212                                                splits.recomputeSubsets();
213                                                current++;
214
215                                                return new ValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>>() {
216
217                                                        @Override
218                                                        public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> getTrainingDataset() {
219                                                                return splits.getTrainingDataset();
220                                                        }
221
222                                                        @Override
223                                                        public GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> getValidationDataset() {
224                                                                return splits.getValidationDataset();
225                                                        }
226                                                };
227                                        }
228
229                                        @Override
230                                        public void remove() {
231                                                throw new UnsupportedOperationException("Removal not supported");
232                                        }
233                                };
234                        }
235
236                        @Override
237                        public int numberIterations() {
238                                return numIterations;
239                        }
240                };
241        }
242}