001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030/** 031 * 032 */ 033package org.openimaj.experiment.evaluation.agreement; 034 035import gnu.trove.list.array.TDoubleArrayList; 036import gnu.trove.map.hash.TObjectDoubleHashMap; 037import gnu.trove.map.hash.TObjectIntHashMap; 038 039import java.util.HashMap; 040import java.util.List; 041import java.util.Map; 042 043/** 044 * Calculates Fleiss inter-rater agreement - a version of Cohen's kappa that 045 * works with multiple raters. Note that it is technially not a kappa as it does 046 * not reduce to Cohen's kappa when used with only 2 raters. 047 * 048 * @see "http://en.wikipedia.org/wiki/Fleiss'_kappa" 049 * @author David Dupplaw (dpd@ecs.soton.ac.uk) 050 * @created 16 Aug 2013 051 */ 052public class FleissInterraterAgreement 053{ 054 /** 055 * Calculate Fleiss interrater agreement 056 * 057 * @see "http://en.wikipedia.org/wiki/Fleiss'_kappa" 058 * @param data 059 * The rater's annotations 060 * @return The Fleiss Kappa 061 */ 062 public static <K, A> double calculate( 063 List<Map<K, A>> data) 064 { 065 // Map from subject to category count (the table) 066 final Map<K, TObjectIntHashMap<A>> table = new HashMap<K, TObjectIntHashMap<A>>(); 067 068 // Total assignments to each category, Pj*Nn 069 final TObjectDoubleHashMap<A> cats = new TObjectDoubleHashMap<A>(); 070 071 // Total ratings made 072 int totalCount = 0; 073 074 // Generate the counts table 075 // Loop through all the raters 076 for (final Map<K, A> ratings : data) 077 { 078 // Loop through the subjects that this rater rated 079 for (final K subject : ratings.keySet()) 080 { 081 final A annotation = ratings.get(subject); 082 if (annotation != null) 083 { 084 TObjectIntHashMap<A> count = table.get(subject); 085 if (count == null) 086 { 087 count = new TObjectIntHashMap<A>(); 088 table.put(subject, count); 089 } 090 091 count.putIfAbsent(annotation, 0); 092 count.increment(annotation); 093 094 cats.putIfAbsent(annotation, 0); 095 cats.increment(annotation); 096 097 totalCount++; 098 } 099 } 100 } 101 102 // Normalise Pj by N*n (totalCount) and square (part of working out 103 // PeBar) 104 final TDoubleArrayList Pj = new TDoubleArrayList(); 105 for (final A x : cats.keySet()) 106 Pj.add((cats.get(x) / totalCount) * 107 (cats.get(x) / totalCount)); 108 109 final int n = data.size(); 110 111 final TDoubleArrayList Pis = new TDoubleArrayList(); 112 for (final K subject : table.keySet()) 113 { 114 double Pi = 0; 115 for (final A cat : table.get(subject).keySet()) 116 { 117 final int nij = table.get(subject).get(cat); 118 Pi += nij * (nij - 1); 119 } 120 Pi /= (n * (n - 1)); 121 Pis.add(Pi); 122 } 123 124 final double Pbar = Pis.sum() / Pis.size(); 125 final double PeBar = Pj.sum(); 126 127 final double kappa = (Pbar - PeBar) / (1 - PeBar); 128 return kappa; 129 } 130}