001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.evaluation.classification.analysers.confusionmatrix; 031 032import gov.sandia.cognition.learning.performance.categorization.ConfusionMatrix; 033 034import java.util.ArrayList; 035import java.util.List; 036 037import net.sf.jasperreports.engine.JasperPrint; 038 039import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; 040import org.openimaj.experiment.evaluation.AnalysisResult; 041 042import com.bethecoder.ascii_table.ASCIITable; 043 044/** 045 * Aggregated confusion matrix results 046 * 047 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 048 * 049 * @param <CLASS> The type of the classes represented by the {@link CMResult}s 050 */ 051public class AggregatedCMResult<CLASS> implements AnalysisResult { 052 /** 053 * Aggregated accuracy and error rate. 054 * 055 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 056 */ 057 public static class AggregateStatistics { 058 private double meanAccuracy; 059 private double stddevAccuracy; 060 061 private double meanErrorRate; 062 private double stddevErrorRate; 063 } 064 065 protected List<CMResult<CLASS>> matrices; 066 067 /** 068 * Default constructor 069 */ 070 public AggregatedCMResult() { 071 this.matrices = new ArrayList<CMResult<CLASS>>(); 072 } 073 074 /** 075 * Construct with a list of results 076 * @param results the results 077 */ 078 public AggregatedCMResult(List<CMResult<CLASS>> results) { 079 this.matrices = results; 080 } 081 082 /** 083 * Compute the current aggregate statistics of the 084 * accumulated results. 085 * 086 * @return the current aggregate statistics 087 */ 088 public AggregateStatistics computeStatistics() { 089 DescriptiveStatistics accuracy = new DescriptiveStatistics(); 090 DescriptiveStatistics errorRate = new DescriptiveStatistics(); 091 092 for (CMResult<CLASS> result : matrices) { 093 ConfusionMatrix<CLASS> m = result.getMatrix(); 094 accuracy.addValue(m.getAccuracy()); 095 errorRate.addValue(m.getErrorRate()); 096 } 097 098 AggregateStatistics s = new AggregateStatistics(); 099 s.meanAccuracy = accuracy.getMean(); 100 s.stddevAccuracy = accuracy.getStandardDeviation(); 101 102 s.meanErrorRate = errorRate.getMean(); 103 s.stddevErrorRate = errorRate.getStandardDeviation(); 104 105 return s; 106 } 107 108 @Override 109 public String toString() { 110 return getSummaryReport(); 111 } 112 113 @Override 114 public JasperPrint getSummaryReport(String title, String info) { 115 //FIXME: 116 throw new UnsupportedOperationException(); 117 } 118 119 @Override 120 public JasperPrint getDetailReport(String title, String info) { 121 //FIXME: 122 throw new UnsupportedOperationException(); 123 } 124 125 @Override 126 public String getSummaryReport() { 127 AggregateStatistics summary = computeStatistics(); 128 129 String [] header = {"Value", "Mean", "Standard Deviation"}; 130 String [][] data = { 131 { "Accuracy", String.format("%2.3f", summary.meanAccuracy), String.format("%2.3f", summary.stddevAccuracy) }, 132 { "Error Rate", String.format("%2.3f", summary.meanErrorRate), String.format("%2.3f", summary.stddevErrorRate) } 133 }; 134 135 return ASCIITable.getInstance().getTable(header, data); 136 } 137 138 @Override 139 public String getDetailReport() { 140 StringBuilder sb = new StringBuilder(); 141 142 sb.append("** Summary Report **\n"); 143 sb.append(getSummaryReport()); 144 sb.append("\n"); 145 sb.append("** Per Run Reports **\n"); 146 for (int i=0; i<this.matrices.size(); i++) { 147 CMResult<CLASS> result = this.matrices.get(i); 148 149 150 sb.append("***************************************************************\n"); 151 sb.append("* Run #"+i+"\n"); 152 sb.append("***************************************************************\n"); 153 sb.append(result.getDetailReport()); 154 sb.append("\n"); 155 } 156 157 return sb.toString(); 158 } 159}