001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.evaluation.classification.analysers.confusionmatrix; 031 032import gov.sandia.cognition.learning.data.DefaultTargetEstimatePair; 033import gov.sandia.cognition.learning.data.TargetEstimatePair; 034import gov.sandia.cognition.learning.performance.categorization.ConfusionMatrixPerformanceEvaluator; 035 036import java.util.ArrayList; 037import java.util.HashSet; 038import java.util.LinkedHashSet; 039import java.util.List; 040import java.util.Map; 041import java.util.Set; 042 043import org.openimaj.experiment.evaluation.classification.ClassificationAnalyser; 044import org.openimaj.experiment.evaluation.classification.ClassificationResult; 045import org.openimaj.experiment.evaluation.classification.Classifier; 046 047/** 048 * A {@link ClassificationAnalyser} that creates Confusion Matrices. 049 * 050 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 051 * 052 * @param <CLASS> 053 * The type of classes produced by the {@link Classifier} 054 * @param <OBJECT> 055 * The type of object classifed by the {@link Classifier} 056 */ 057public class CMAnalyser<OBJECT, CLASS> 058implements ClassificationAnalyser< 059CMResult<CLASS>, 060CLASS, 061OBJECT> 062{ 063 /** 064 * Strategies for building confusion matrices 065 * 066 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 067 */ 068 public static enum Strategy { 069 /** 070 * Strategy to use when there is exactly one actual class and one 071 * predicted class. 072 */ 073 SINGLE { 074 @Override 075 protected <CLASS> void add( 076 List<TargetEstimatePair<CLASS, CLASS>> data, 077 Set<CLASS> predicted, Set<CLASS> actual) 078 { 079 data.add(DefaultTargetEstimatePair.create( 080 actual.size() == 0 ? null : new ArrayList<CLASS>(actual).get(0), 081 predicted.size() == 0 ? null : new ArrayList<CLASS>(predicted).get(0) 082 )); 083 } 084 }, 085 /** 086 * Strategy for multiple possible actual classes and predicted classes. 087 * Deals with: 088 * <ol> 089 * <li>true positives (a class present in both the predicted and actual 090 * set</li> 091 * <li>false positives (a predicted class not being in the actual set)</li> 092 * <li>false negatives (an actual class not being in the predicted set)</li> 093 * </ol> 094 * False positives and negatives are dealt with by using 095 * <code>null</code> values for the actual/predicted class respectively. 096 */ 097 MULTIPLE { 098 @Override 099 protected <CLASS> void add( 100 List<TargetEstimatePair<CLASS, CLASS>> data, 101 Set<CLASS> predicted, Set<CLASS> actual) 102 { 103 final HashSet<CLASS> allClasses = new HashSet<CLASS>(); 104 allClasses.addAll(predicted); 105 allClasses.addAll(actual); 106 107 for (final CLASS clz : allClasses) { 108 final CLASS target = actual.contains(clz) ? clz : null; 109 final CLASS estimate = predicted.contains(clz) ? clz : null; 110 111 data.add(DefaultTargetEstimatePair.create(target, estimate)); 112 } 113 } 114 }, 115 /** 116 * Strategy for multiple possible actual classes and predicted classes 117 * in the case the predictions and actual classes are ordered and there 118 * is a one-to-one correspondence. 119 * <p> 120 * A {@link RuntimeException} will be thrown if the sets are not the 121 * same size and both instances of {@link LinkedHashSet}. 122 */ 123 MULTIPLE_ORDERED { 124 @SuppressWarnings("unchecked") 125 @Override 126 protected <CLASS> void add( 127 List<TargetEstimatePair<CLASS, CLASS>> data, 128 Set<CLASS> predicted, Set<CLASS> actual) 129 { 130 final LinkedHashSet<CLASS> op = (LinkedHashSet<CLASS>) predicted; 131 final LinkedHashSet<CLASS> ap = (LinkedHashSet<CLASS>) actual; 132 133 if (op.size() != ap.size()) 134 throw new RuntimeException("Sets are not the same size!"); 135 136 final Object[] opa = op.toArray(); 137 final Object[] apa = ap.toArray(); 138 139 for (int i = 0; i < opa.length; i++) 140 data.add(new DefaultTargetEstimatePair<CLASS, CLASS>((CLASS) opa[i], (CLASS) apa[i])); 141 } 142 }; 143 144 protected abstract <CLASS> void add(List<TargetEstimatePair<CLASS, CLASS>> data, Set<CLASS> predicted, 145 Set<CLASS> actual); 146 } 147 148 protected Strategy strategy; 149 ConfusionMatrixPerformanceEvaluator<?, CLASS> eval = new ConfusionMatrixPerformanceEvaluator<Object, CLASS>(); 150 151 /** 152 * Construct with the given strategy for building the confusion matrix 153 * 154 * @param strategy 155 * the strategy 156 */ 157 public CMAnalyser(Strategy strategy) { 158 this.strategy = strategy; 159 } 160 161 @Override 162 public CMResult<CLASS> analyse( 163 Map<OBJECT, ClassificationResult<CLASS>> predicted, 164 Map<OBJECT, Set<CLASS>> actual) 165 { 166 final List<TargetEstimatePair<CLASS, CLASS>> data = new ArrayList<TargetEstimatePair<CLASS, CLASS>>(); 167 168 for (final OBJECT obj : predicted.keySet()) { 169 final Set<CLASS> pclasses = predicted.get(obj).getPredictedClasses(); 170 final Set<CLASS> aclasses = actual.get(obj); 171 172 strategy.add(data, pclasses, aclasses); 173 } 174 175 return new CMResult<CLASS>(eval.evaluatePerformance(data)); 176 } 177}