001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.evaluation.classification.analysers.confusionmatrix; 031 032import gov.sandia.cognition.learning.performance.categorization.ConfusionMatrix; 033import net.sf.jasperreports.engine.JasperPrint; 034 035import org.openimaj.experiment.evaluation.AnalysisResult; 036 037/** 038 * Results of a confusion matrix analysis using the {@link CMAnalyser}. 039 * 040 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 041 * 042 * @param <CLASS> 043 * Type of classes in the confusion matrix 044 */ 045public class CMResult<CLASS> implements AnalysisResult { 046 ConfusionMatrix<CLASS> matrix; 047 048 /** 049 * Construct with a {@link ConfusionMatrix}. 050 * 051 * @param matrix 052 * the matrix 053 */ 054 public CMResult(ConfusionMatrix<CLASS> matrix) { 055 this.matrix = matrix; 056 } 057 058 /** 059 * Get the internal {@link ConfusionMatrix}. 060 * 061 * @return the confusion matrix 062 */ 063 public ConfusionMatrix<CLASS> getMatrix() { 064 return matrix; 065 } 066 067 @Override 068 public String toString() { 069 return this.getSummaryReport(); 070 } 071 072 @Override 073 public JasperPrint getSummaryReport(String title, String info) { 074 // FIXME: 075 throw new UnsupportedOperationException(); 076 } 077 078 @Override 079 public JasperPrint getDetailReport(String title, String info) { 080 // FIXME: 081 throw new UnsupportedOperationException(); 082 } 083 084 @Override 085 public String getSummaryReport() { 086 final StringBuilder sb = new StringBuilder(); 087 088 sb.append(String.format("%10s: %2.3f\n", "Accuracy", matrix.getAccuracy())); 089 sb.append(String.format("%10s: %2.3f\n", "Error Rate", matrix.getErrorRate())); 090 091 return sb.toString(); 092 } 093 094 @Override 095 public String getDetailReport() { 096 final StringBuilder sb = new StringBuilder(); 097 098 sb.append("*********************** Overall Results ***********************\n"); 099 sb.append(String.format("%25s: %2.3f\n", "Total instances", matrix.getTotalCount())); 100 sb.append(String.format("%25s: %2.3f\n", "Total correct", matrix.getTotalCorrectCount())); 101 sb.append(String.format("%25s: %2.3f\n", "Total incorrect", matrix.getTotalIncorrectCount())); 102 sb.append(String.format("%25s: %2.3f\n", "Accuracy", matrix.getAccuracy())); 103 sb.append(String.format("%25s: %2.3f\n", "Error Rate", matrix.getErrorRate())); 104 sb.append(String.format("%25s: %2.3f\n", "Average Class Accuracy", matrix.getAverageCategoryAccuracy())); 105 sb.append(String.format("%25s: %2.3f\n", "Average Class Error Rate", matrix.getAverageCategoryErrorRate())); 106 sb.append("\n"); 107 sb.append("********************** Per Class Results **********************\n"); 108 sb.append(String.format("%s\t", "Class")); 109 sb.append(String.format("%s\t", "Class Accuracy")); 110 sb.append(String.format("%s\t", "Class Error Rate")); 111 sb.append(String.format("%s\t", "Actual Count")); 112 sb.append(String.format("%s\n", "Predicted Count")); 113 for (final CLASS c : matrix.getActualCategories()) { 114 sb.append(String.format("%10s\t", c)); 115 sb.append(String.format("%2.3f\t", matrix.getCategoryAccuracy(c))); 116 sb.append(String.format("%2.3f\t", matrix.getCategoryErrorRate(c))); 117 sb.append(String.format("%6f\t", matrix.getActualCount(c))); 118 sb.append(String.format("%6f\n", matrix.getPredictedCount(c))); 119 } 120 121 return sb.toString(); 122 } 123}