001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.evaluation.cluster.analyser; 031 032import gnu.trove.list.array.TIntArrayList; 033 034import java.util.Random; 035 036import org.openimaj.experiment.evaluation.AnalysisResult; 037 038 039/** 040 * Wraps the functionality of any {@link ClusterAnalyser} as corrected by 041 * a Random baseline. This implementation follows that of cluster eval: 042 * http://chris.de-vries.id.au/2013/06/clustereval-10-release.html 043 * 044 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 045 * 046 * @param <ANNER> 047 * @param <ANNYS> 048 */ 049public class RandomBaselineClusterAnalyser< 050 ANNER extends ClusterAnalyser<ANNYS>, 051 ANNYS extends RandomBaselineWrappable & AnalysisResult> 052 implements 053 ClusterAnalyser<RandomBaselineClusterAnalysis<ANNYS>> 054 { 055 056 private static final int NUMBER_OF_TRIALS = 100; 057 private ANNER ann; 058 private int trials; 059 private Random random; 060 /** 061 * @param analyser the underlying analyser 062 * 063 */ 064 public RandomBaselineClusterAnalyser(ANNER analyser) { 065 this.ann = analyser; 066 this.trials = NUMBER_OF_TRIALS; 067 this.random = new Random(); 068 } 069 070 /** 071 * @param analyser 072 * @param trials the number of random baselines to try, finding an average random score 073 */ 074 public RandomBaselineClusterAnalyser(ANNER analyser, int trials) { 075 this.ann = analyser; 076 this.trials = trials; 077 this.random = new Random(); 078 } 079 080 /** 081 * @param analyser 082 * @param trials the number of random baselines to try, finding an average random score 083 * @param seed 084 */ 085 public RandomBaselineClusterAnalyser(ANNER analyser, int trials, long seed) { 086 this.ann = analyser; 087 this.trials = trials; 088 this.random = new Random(seed); 089 } 090 @Override 091 public RandomBaselineClusterAnalysis<ANNYS> analyse(int[][] correct,int[][] estimated) { 092 ANNYS score = ann.analyse(correct, estimated); 093 ANNYS randscore = ann.analyse(correct, baseline(estimated)); 094 double meanrand = randscore.score(); 095 for (int i = 0; i < this.trials; i++) { 096 randscore = ann.analyse(correct, baseline(estimated)); 097 meanrand += randscore.score(); 098 } 099 meanrand /= (trials+1); 100 return new RandomBaselineClusterAnalysis<ANNYS>(score,meanrand ); 101 } 102 private int[][] baseline(int[][] estimated) { 103 TIntArrayList items = new TIntArrayList(); 104 for (int[] is : estimated) { 105 for (int i = 0; i < is.length; i++) { 106 items.add(is[i]); 107 } 108 } 109 int[][] baseline = new int[estimated.length][]; 110 items.shuffle(this.random); 111 int[] itemsArr = items.toArray(); 112 int seen = 0; 113 for (int i = 0; i < baseline.length; i++) { 114 int needed = estimated[i].length; 115 baseline[i] = new int[needed]; 116 System.arraycopy(itemsArr, seen, baseline[i], 0, needed); 117 seen+=needed; 118 } 119 120 return baseline; 121 } 122 123}