001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.validation; 031 032import java.util.Map; 033 034import org.openimaj.data.RandomData; 035import org.openimaj.data.dataset.GroupedDataset; 036import org.openimaj.data.dataset.ListBackedDataset; 037import org.openimaj.data.dataset.ListDataset; 038import org.openimaj.data.dataset.MapBackedDataset; 039import org.openimaj.util.pair.IndependentPair; 040 041/** 042 * Hold-Out validation for grouped data that selects a percentage of the 043 * original data to use for training, and the remainder to use for validation. 044 * No attempt is made to ensure that the distribution of relative group sizes is 045 * constant. If this is important, use a 046 * {@link StratifiedGroupedRandomisedPercentageHoldOut} instead. 047 * 048 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 049 * 050 * @param <KEY> 051 * Type of groups 052 * @param <INSTANCE> 053 * Type of the instances in the dataset 054 */ 055public class GroupedRandomisedPercentageHoldOut<KEY, INSTANCE> 056 extends 057 DefaultValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>> 058{ 059 /** 060 * Construct with the given dataset and percentage of training data (0..1). 061 * 062 * @param percentageTraining 063 * percentage of the dataset to use for training 064 * @param dataset 065 * the dataset 066 */ 067 public GroupedRandomisedPercentageHoldOut(double percentageTraining, 068 GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> dataset) 069 { 070 if (percentageTraining < 0 || percentageTraining > 1) 071 throw new IllegalArgumentException( 072 "percentage of training instances must be between 0 and 1"); 073 074 final int size = dataset.numInstances(); 075 final int[] indices = RandomData.getUniqueRandomInts(size, 0, size); 076 final int nTrain = (int) (percentageTraining * size); 077 078 this.training = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 079 final Map<KEY, ListDataset<INSTANCE>> trainMap = ((MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>) training) 080 .getMap(); 081 for (int i = 0; i < nTrain; i++) { 082 final IndependentPair<KEY, INSTANCE> p = select(indices[i], dataset); 083 084 ListBackedDataset<INSTANCE> lmd = (ListBackedDataset<INSTANCE>) trainMap 085 .get(p.firstObject()); 086 if (lmd == null) 087 trainMap.put(p.firstObject(), 088 lmd = new ListBackedDataset<INSTANCE>()); 089 lmd.add(p.getSecondObject()); 090 } 091 092 this.validation = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 093 final Map<KEY, ListDataset<INSTANCE>> validMap = ((MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>) validation) 094 .getMap(); 095 for (int i = nTrain; i < size; i++) { 096 final IndependentPair<KEY, INSTANCE> p = select(indices[i], dataset); 097 098 ListBackedDataset<INSTANCE> lmd = (ListBackedDataset<INSTANCE>) validMap 099 .get(p.firstObject()); 100 if (lmd == null) 101 validMap.put(p.firstObject(), 102 lmd = new ListBackedDataset<INSTANCE>()); 103 lmd.add(p.getSecondObject()); 104 } 105 } 106 107 private IndependentPair<KEY, INSTANCE> select(int idx, 108 GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> dataset) 109 { 110 for (final KEY k : dataset.getGroups()) { 111 final ListDataset<INSTANCE> instances = dataset.getInstances(k); 112 final int sz = instances.size(); 113 114 if (idx < sz) { 115 return new IndependentPair<KEY, INSTANCE>(k, 116 instances.getInstance(idx)); 117 } 118 idx -= sz; 119 } 120 121 return null; 122 } 123}