001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.validation; 031 032import org.openimaj.data.RandomData; 033import org.openimaj.data.dataset.ListBackedDataset; 034import org.openimaj.data.dataset.ListDataset; 035import org.openimaj.experiment.dataset.util.DatasetAdaptors; 036import org.openimaj.util.list.AcceptingListView; 037import org.openimaj.util.list.SkippingListView; 038 039/** 040 * Hold-Out validation that selects a percentage of the original 041 * data to use for training, and the remainder to use for validation. 042 * 043 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 044 * 045 * @param <INSTANCE> Type of the instances in the dataset 046 */ 047public class RandomisedPercentageHoldOut<INSTANCE> extends DefaultValidationData<ListDataset<INSTANCE>> { 048 049 /** 050 * Construct with the given dataset and percentage of training 051 * data (0..1). 052 * 053 * @param percentageTraining percentage of the dataset to use for training 054 * @param dataset the dataset 055 */ 056 public RandomisedPercentageHoldOut(double percentageTraining, ListDataset<INSTANCE> dataset) { 057 if (percentageTraining < 0 || percentageTraining > 1) 058 throw new IllegalArgumentException("percentage of training instances must be between 0 and 1"); 059 060 if (percentageTraining < 0.5) { 061 int nTraining = (int)Math.round(percentageTraining * dataset.size()); 062 int [] trainKeys = RandomData.getUniqueRandomInts(nTraining, 0, dataset.size()); 063 064 training = new ListBackedDataset<INSTANCE>(new AcceptingListView<INSTANCE>(DatasetAdaptors.asList(dataset), trainKeys)); 065 validation = new ListBackedDataset<INSTANCE>(new SkippingListView<INSTANCE>(DatasetAdaptors.asList(dataset), trainKeys)); 066 } else { 067 int nValidation = (int)Math.round((1.0 - percentageTraining) * dataset.size()); 068 int [] validationKeys = RandomData.getUniqueRandomInts(nValidation, 0, dataset.size()); 069 070 training = new ListBackedDataset<INSTANCE>(new SkippingListView<INSTANCE>(DatasetAdaptors.asList(dataset), validationKeys)); 071 validation = new ListBackedDataset<INSTANCE>(new AcceptingListView<INSTANCE>(DatasetAdaptors.asList(dataset), validationKeys)); 072 } 073 } 074}