001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.experiment.validation; 031 032import java.util.Map; 033 034import org.openimaj.data.dataset.GroupedDataset; 035import org.openimaj.data.dataset.ListDataset; 036import org.openimaj.data.dataset.MapBackedDataset; 037 038/** 039 * Stratified Hold-Out validation for grouped data that selects a percentage of 040 * the original data to use for training, and the remainder to use for 041 * validation. The splitting of data is performed per group to ensure that the 042 * relative group sizes remain (approximately) constant. 043 * 044 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 045 * 046 * @param <KEY> 047 * Type of groups 048 * @param <INSTANCE> 049 * Type of the instances in the dataset 050 */ 051public class StratifiedGroupedRandomisedPercentageHoldOut<KEY, INSTANCE> 052 extends 053 DefaultValidationData<GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>> { 054 055 /** 056 * Construct with the given dataset and percentage of training data (0..1). 057 * 058 * @param percentageTraining 059 * percentage of the dataset to use for training 060 * @param dataset 061 * the dataset 062 */ 063 public StratifiedGroupedRandomisedPercentageHoldOut( 064 double percentageTraining, 065 GroupedDataset<KEY, ListDataset<INSTANCE>, INSTANCE> dataset) { 066 if (percentageTraining < 0 || percentageTraining > 1) 067 throw new IllegalArgumentException( 068 "percentage of training instances must be between 0 and 1"); 069 070 this.training = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 071 this.validation = new MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>(); 072 073 Map<KEY, ListDataset<INSTANCE>> trainMap = ((MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>) training) 074 .getMap(); 075 Map<KEY, ListDataset<INSTANCE>> validMap = ((MapBackedDataset<KEY, ListDataset<INSTANCE>, INSTANCE>) validation) 076 .getMap(); 077 078 for (KEY key : dataset.getGroups()) { 079 RandomisedPercentageHoldOut<INSTANCE> ho = new RandomisedPercentageHoldOut<INSTANCE>( 080 percentageTraining, dataset.getInstances(key)); 081 082 trainMap.put(key, ho.training); 083 validMap.put(key, ho.validation); 084 } 085 } 086}