001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.feature.local.matcher; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.citation.annotation.Reference; 036import org.openimaj.citation.annotation.ReferenceType; 037import org.openimaj.citation.annotation.References; 038import org.openimaj.feature.DoubleFVComparison; 039import org.openimaj.feature.local.LocalFeature; 040import org.openimaj.util.pair.Pair; 041 042/** 043 * Basic local feature matcher. Matches interest points by finding closest two 044 * interest points to target and checking whether the distance between the two 045 * matches is sufficiently large. 046 * 047 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 048 * @param <T> 049 */ 050@References( 051 references = { 052 @Reference( 053 type = ReferenceType.Article, 054 author = { "David Lowe" }, 055 title = "Distinctive image features from scale-invariant keypoints", 056 year = "2004", 057 journal = "IJCV", 058 pages = { "91", "110" }, 059 month = "January", 060 number = "2", 061 volume = "60"), 062 @Reference( 063 type = ReferenceType.Inproceedings, 064 author = { "David Lowe" }, 065 title = "Object recognition from local scale-invariant features", 066 year = "1999", 067 booktitle = "Proc. of the International Conference on Computer Vision {ICCV}", 068 pages = { "1150", "1157" }) 069 }) 070public class BasicMatcher<T extends LocalFeature<?, ?>> implements LocalFeatureMatcher<T> { 071 protected List<T> modelKeypoints; 072 protected List<Pair<T>> matches; 073 protected int thresh = 8; 074 075 /** 076 * Initialise the matcher setting the threshold which the difference between the 077 * scores of the top two best matches must differ in order to count the first as 078 * a good match. 079 * 080 * @param threshold 081 * (as an integer percentage) 082 */ 083 public BasicMatcher(int threshold) { 084 matches = new ArrayList<Pair<T>>(); 085 thresh = threshold; 086 } 087 088 /** 089 * @return List of pairs of matching keypoints 090 */ 091 @Override 092 public List<Pair<T>> getMatches() { 093 return matches; 094 } 095 096 @Override 097 public boolean findMatches(List<T> keys1) { 098 matches = new ArrayList<Pair<T>>(); 099 100 /* 101 * Match the keys in list keys1 to their best matches in keys2. 102 */ 103 for (final T k : keys1) { 104 final T match = checkForMatch(k, modelKeypoints); 105 106 if (match != null) { 107 matches.add(new Pair<T>(k, match)); 108 } 109 } 110 111 return true; 112 } 113 114 /** 115 * This searches through the keypoints in klist for the two closest matches to 116 * key. If the closest is less than <code>threshold</code> times distance to 117 * second closest, then return the closest match. Otherwise, return NULL. 118 */ 119 protected T checkForMatch(T query, List<T> features) { 120 double distsq1 = Double.MAX_VALUE, distsq2 = Double.MAX_VALUE; 121 T minkey = null; 122 123 // find two closest matches 124 for (final T target : features) { 125 final double dsq = target.getFeatureVector().asDoubleFV() 126 .compare(query.getFeatureVector().asDoubleFV(), DoubleFVComparison.SUM_SQUARE); 127 128 if (dsq < distsq1) { 129 distsq2 = distsq1; 130 distsq1 = dsq; 131 minkey = target; 132 } else if (dsq < distsq2) { 133 distsq2 = dsq; 134 } 135 } 136 137 // check the distance against the threshold 138 if (10 * 10 * distsq1 < thresh * thresh * distsq2) { 139 return minkey; 140 } else 141 return null; 142 } 143 144 @Override 145 public void setModelFeatures(List<T> modelkeys) { 146 modelKeypoints = modelkeys; 147 } 148 149 /** 150 * Set the matching threshold 151 * 152 * @param thresh 153 * the threshold 154 */ 155 public void setThreshold(int thresh) { 156 this.thresh = thresh; 157 } 158}