001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.feature.local.matcher; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.citation.annotation.Reference; 036import org.openimaj.citation.annotation.ReferenceType; 037import org.openimaj.citation.annotation.References; 038import org.openimaj.image.feature.local.keypoints.Keypoint; 039import org.openimaj.knn.approximate.ByteNearestNeighboursKDTree; 040import org.openimaj.util.pair.Pair; 041 042/** 043 * Basic keypoint matcher. Matches keypoints by finding closest Two keypoints to 044 * target and checking whether the distance between the two matches is 045 * sufficiently large. 046 * <p> 047 * This is the method for determining matches suggested by Lowe in the original 048 * SIFT papers. 049 * 050 * @author Jonathon Hare 051 * @param <T> 052 * The type of keypoint 053 */ 054@References(references = { 055 @Reference( 056 type = ReferenceType.Article, 057 author = { "David Lowe" }, 058 title = "Distinctive image features from scale-invariant keypoints", 059 year = "2004", 060 journal = "IJCV", 061 pages = { "91", "110" }, 062 month = "January", 063 number = "2", 064 volume = "60"), 065 @Reference( 066 type = ReferenceType.Inproceedings, 067 author = { "David Lowe" }, 068 title = "Object recognition from local scale-invariant features", 069 year = "1999", 070 booktitle = "Proc. of the International Conference on Computer Vision {ICCV}", 071 pages = { "1150", "1157" } 072 ) 073}) 074public class FastBasicKeypointMatcher<T extends Keypoint> extends BasicMatcher<T> { 075 protected ByteNearestNeighboursKDTree modelKeypointsKNN; 076 077 /** 078 * Construct with a threshold of 8, corresponding to the 0.8 in Lowe's IJCV 079 * paper 080 */ 081 public FastBasicKeypointMatcher() 082 { 083 super(8); 084 } 085 086 /** 087 * 088 * @param threshold 089 * threshold for determining matching keypoints 090 */ 091 public FastBasicKeypointMatcher(int threshold) 092 { 093 super(threshold); 094 } 095 096 /** 097 * Given a pair of images and their keypoints, pick the first keypoint from 098 * one image and find its closest match in the second set of keypoints. Then 099 * write the result to a file. 100 */ 101 @Override 102 public boolean findMatches(List<T> keys1) 103 { 104 matches = new ArrayList<Pair<T>>(); 105 106 final byte[][] data = new byte[keys1.size()][]; 107 for (int i = 0; i < keys1.size(); i++) 108 data[i] = keys1.get(i).ivec; 109 110 final int[][] argmins = new int[keys1.size()][2]; 111 final float[][] mins = new float[keys1.size()][2]; 112 modelKeypointsKNN.searchKNN(data, 2, argmins, mins); 113 114 for (int i = 0; i < keys1.size(); i++) { 115 final float distsq1 = mins[i][0]; 116 final float distsq2 = mins[i][1]; 117 118 if (10 * 10 * distsq1 < thresh * thresh * distsq2) { 119 matches.add(new Pair<T>(keys1.get(i), modelKeypoints.get(argmins[i][0]))); 120 } 121 } 122 123 return true; 124 } 125 126 @Override 127 public void setModelFeatures(List<T> modelkeys) { 128 modelKeypoints = modelkeys; 129 130 final byte[][] data = new byte[modelkeys.size()][]; 131 for (int i = 0; i < modelkeys.size(); i++) 132 data[i] = modelkeys.get(i).ivec; 133 134 modelKeypointsKNN = new ByteNearestNeighboursKDTree(data, 1, 100); 135 } 136}