001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.feature.local.matcher; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.image.feature.local.keypoints.Keypoint; 036import org.openimaj.knn.approximate.ByteNearestNeighboursKDTree; 037import org.openimaj.util.pair.Pair; 038 039/** 040 * 041 * Uses a ByteKDTree to estimate approximate nearest neighbours more 042 * efficiently. 043 * 044 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 045 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 046 * 047 * @param <T> 048 */ 049public class FastEuclideanKeypointMatcher<T extends Keypoint> implements LocalFeatureMatcher<T> { 050 private ByteNearestNeighboursKDTree modelKeypointsKNN; 051 private int threshold; 052 protected List<Pair<T>> matches; 053 private List<T> modelKeypoints; 054 055 /** 056 * @param threshold 057 * threshold for determining matching keypoints 058 */ 059 public FastEuclideanKeypointMatcher(int threshold) { 060 this.threshold = threshold; 061 } 062 063 @Override 064 public void setModelFeatures(List<T> modelkeys) { 065 modelKeypoints = modelkeys; 066 067 final byte[][] data = new byte[modelkeys.size()][]; 068 for (int i = 0; i < modelkeys.size(); i++) 069 data[i] = modelkeys.get(i).ivec; 070 071 modelKeypointsKNN = new ByteNearestNeighboursKDTree(data, 8, 768); 072 } 073 074 @Override 075 public boolean findMatches(List<T> keys1) { 076 matches = new ArrayList<Pair<T>>(); 077 078 final byte[][] data = new byte[keys1.size()][]; 079 for (int i = 0; i < keys1.size(); i++) 080 data[i] = keys1.get(i).ivec; 081 082 final int[] argmins = new int[keys1.size()]; 083 final float[] mins = new float[keys1.size()]; 084 modelKeypointsKNN.searchNN(data, argmins, mins); 085 086 for (int i = 0; i < keys1.size(); i++) { 087 final float distsq = mins[i]; 088 089 if (distsq < threshold) { 090 matches.add(new Pair<T>(keys1.get(i), modelKeypoints.get(argmins[i]))); 091 } 092 } 093 094 return true; 095 } 096 097 @Override 098 public List<Pair<T>> getMatches() { 099 return this.matches; 100 } 101 102 /** 103 * Set the matching threshold 104 * 105 * @param threshold 106 * the threshold 107 */ 108 public void setThreshold(int threshold) { 109 this.threshold = threshold; 110 } 111}