001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.feature.local.matcher; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.image.feature.local.keypoints.Keypoint; 036import org.openimaj.knn.approximate.ByteNearestNeighboursKDTree; 037import org.openimaj.util.pair.Pair; 038 039/** 040 * A {@link LocalFeatureMatcher} that only matches points that 041 * are self similar with other points. 042 * 043 * Target points that match have a distance less than a threshold 044 * to the query point. The number of points less than the threshold 045 * must be greater than the limit to be counted as matches. 046 * 047 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 048 * 049 * @param <T> Type of {@link Keypoint} being matched 050 */ 051public class MultipleMatchesMatcher<T extends Keypoint> implements LocalFeatureMatcher<T> { 052 private int count; 053 protected List <Pair<T>> matches; 054 private ByteNearestNeighboursKDTree modelKeypointsKNN; 055 private double thresh; 056 private List<T> modelKeypoints; 057 058 /** 059 * Construct with the given minimum number of similar features 060 * and threshold for defining similarity. 061 * @param count number of matches with a distance less than thresh to be counted. 062 * @param thresh the threshold. 063 */ 064 public MultipleMatchesMatcher(int count, double thresh) { 065 this.count = count; 066 if(this.count < 2) this.count = 2; 067 this.thresh = thresh; 068 matches = new ArrayList<Pair<T>>(); 069 } 070 071 @Override 072 public void setModelFeatures(List<T> modelkeys) { 073 this.modelKeypoints = modelkeys; 074 byte [][] data = new byte[modelkeys.size()][]; 075 for (int i=0; i<modelkeys.size(); i++) 076 data[i] = modelkeys.get(i).ivec; 077 078 modelKeypointsKNN = new ByteNearestNeighboursKDTree(data, 1, 100); 079 } 080 081 @Override 082 public boolean findMatches(List<T> keys1) { 083 byte [][] data = new byte[keys1.size()][]; 084 for (int i=0; i<keys1.size(); i++) 085 data[i] = keys1.get(i).ivec; 086 087 int [][] argmins = new int[keys1.size()][this.count]; 088 float [][] mins = new float[keys1.size()][this.count]; 089 090 modelKeypointsKNN.searchKNN(data, this.count, argmins, mins); 091 double threshProp = (1.0 + thresh) * (1.0 + thresh) ; 092 093 for (int i=0; i<keys1.size(); i++) { 094 // Get the first distance 095 096 boolean matchesMultiple = true; 097 if(mins[i].length > 0 && mins[i].length >= this.count) { 098 double distsq1 = mins[i][0]; 099 100 for (int j = 1; j < this.count; j++) { 101 double distsq2 = mins[i][j]; 102 103 if (distsq2 > distsq1 * threshProp) { 104 // Then there is a mismatch within the first this.count, break 105 matchesMultiple = false; 106 break; 107 } 108 } 109 } else { 110 matchesMultiple = false; 111 } 112 113 if(matchesMultiple) { 114 // Add each of the pairs that match 115 for (int j = 0; j < this.count; j++) { 116 matches.add(new Pair<T>(keys1.get(i), modelKeypoints.get(argmins[i][j]))); 117 } 118 } 119 } 120 121 return true; 122 } 123 124 @Override 125 public List<Pair<T>> getMatches() { 126 return this.matches; 127 } 128 129}