001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.image.analysis.pyramid.gaussian;
031
032import org.openimaj.image.FImage;
033import org.openimaj.image.Image;
034import org.openimaj.image.analyser.ImageAnalyser;
035import org.openimaj.image.analysis.pyramid.Pyramid;
036import org.openimaj.image.processing.resize.ResizeProcessor;
037import org.openimaj.image.processor.SinglebandImageProcessor;
038
039/**
040 * A Gaussian image pyramid consisting of a stack of octaves where the image
041 * halves its size. The pyramid is of the style described in Lowe's SIFT paper.
042 * 
043 * Octaves are processed by an OctaveProcessor as they are created if the
044 * processor is set in the options object.
045 * 
046 * The pyramid will only hold onto its octaves if either the keepOctaves option
047 * is set to true, or if a PyramidProcessor is set in the options. The
048 * PyramidProcessor will called after all the octaves are created.
049 * 
050 * Pyramids are Iterable for easy access to the octaves; however this will only
051 * work if the pyramid has already been populated with the octaves retained.
052 * 
053 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
054 * 
055 * @param <I>
056 *            Type of underlying image
057 */
058public class GaussianPyramid<I extends Image<?, I> & SinglebandImageProcessor.Processable<Float, FImage, I>>
059                extends
060                Pyramid<GaussianPyramidOptions<I>, GaussianOctave<I>, I>
061                implements
062                ImageAnalyser<I>, Iterable<GaussianOctave<I>>
063{
064        /**
065         * Construct a Pyramid with the given options.
066         * 
067         * @param options
068         *            the options
069         */
070        public GaussianPyramid(GaussianPyramidOptions<I> options) {
071                super(options);
072        }
073
074        /*
075         * (non-Javadoc)
076         * 
077         * @see
078         * org.openimaj.image.processing.pyramid.AbstractPyramid#process(org.openimaj
079         * .image.Image)
080         */
081        @Override
082        public void process(I img) {
083                if (img.getWidth() <= 1 || img.getHeight() <= 1)
084                        throw new IllegalArgumentException("Image is too small");
085
086                // the octave image size: 1 means same as input, 0.5 is twice as big as
087                // input, 2 is half input, 4 is quarter input, etc
088                float octaveSize = 1.0f;
089
090                // if doubleInitialImage is set, then the initial image should be scaled
091                // to
092                // twice its original size and the
093                I image;
094                if (options.doubleInitialImage) {
095                        image = ResizeProcessor.doubleSize(img);
096                        octaveSize *= 0.5;
097                } else
098                        image = img.clone();
099
100                // Lowe's IJCV paper (P.10) suggests that if you double the size of the
101                // initial image then it has a sigma of 1.0; if the image is not doubled
102                // the sigma is 0.5
103                final float currentSigma = (options.doubleInitialImage ? 1.0f : 0.5f);
104                if (options.initialSigma > currentSigma) {
105                        // we now need to bring the starting image to a sigma of
106                        // initialSigma
107                        // in order to start building the pyramid (every octave starts at
108                        // initialSigma sigmas).
109                        final float sigma = (float) Math.sqrt(options.initialSigma * options.initialSigma - currentSigma
110                                        * currentSigma);
111                        image.processInplace(this.options.createGaussianBlur(sigma));
112                }
113
114                // the minimum size image in the pyramid must be bigger than
115                // two pixels + whatever border is required by the options
116                // (on both sides).
117                final int minImageSize = 2 + (2 * options.getBorderPixels());
118
119                while (image.getHeight() > minImageSize && image.getWidth() > minImageSize) {
120                        // construct empty octave
121                        final GaussianOctave<I> currentOctave = new GaussianOctave<I>(this, octaveSize);
122
123                        // populate the octave with images; once the octave
124                        // is complete any OctaveProcessor specified in the
125                        // options will be applied.
126                        currentOctave.process(image);
127
128                        // get the image with 2*sigma from the octave and
129                        // half its size ready for the next octave
130                        image = ResizeProcessor.halfSize(currentOctave.getNextOctaveImage());
131
132                        octaveSize *= 2.0; // the size of the octave increases by a factor
133                                                                // of two each iteration
134
135                        // if the octaves array is not null we want to retain each octave.
136                        if (octaves != null)
137                                octaves.add(currentOctave);
138                }
139
140                // if a PyramidProcessor was specified in the options it should
141                // be applied now all the octaves are complete.
142                if (options.getPyramidProcessor() != null) {
143                        options.getPyramidProcessor().process(this);
144                }
145        }
146}