001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.feature.dense.gradient; 031 032import org.openimaj.citation.annotation.Reference; 033import org.openimaj.citation.annotation.ReferenceType; 034import org.openimaj.image.FImage; 035import org.openimaj.image.analyser.ImageAnalyser; 036import org.openimaj.image.analysis.algorithm.histogram.GradientOrientationHistogramExtractor; 037import org.openimaj.image.analysis.algorithm.histogram.binning.SpatialBinningStrategy; 038import org.openimaj.image.feature.dense.gradient.binning.FixedHOGStrategy; 039import org.openimaj.image.feature.dense.gradient.binning.FlexibleHOGStrategy; 040import org.openimaj.image.processing.convolution.FImageGradients; 041import org.openimaj.math.geometry.shape.Rectangle; 042import org.openimaj.math.statistics.distribution.Histogram; 043 044/** 045 * Implementation of an extractor for the Histogram of Oriented Gradients (HOG) 046 * feature for object detection. This implementation allows any kind of spatial 047 * layout to be used through different implementations of 048 * {@link SpatialBinningStrategy}s. HOG features can be efficiently extracted 049 * for many windows of the image. 050 * <p> 051 * The actual work of computing and normalising the descriptor is performed by 052 * the {@link SpatialBinningStrategy} (i.e. a {@link FixedHOGStrategy} or 053 * {@link FlexibleHOGStrategy}); this class just provides the objects required 054 * for efficient histogram computation (namely a 055 * {@link GradientOrientationHistogramExtractor}) for the image being analysed. 056 * <p> 057 * Normally, HOG features are computed using all gradients in the image, but 058 * this class makes it possible to only consider gradients along "edges" using 059 * the {@link #analyseImage(FImage, FImage)} method. 060 * 061 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 062 */ 063@Reference( 064 type = ReferenceType.Inproceedings, 065 author = { "Dalal, Navneet", "Triggs, Bill" }, 066 title = "Histograms of Oriented Gradients for Human Detection", 067 year = "2005", 068 booktitle = "Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01", 069 pages = { "886", "", "893" }, 070 url = "http://dx.doi.org/10.1109/CVPR.2005.177", 071 publisher = "IEEE Computer Society", 072 series = "CVPR '05", 073 customData = { 074 "isbn", "0-7695-2372-2", 075 "numpages", "8", 076 "doi", "10.1109/CVPR.2005.177", 077 "acmid", "1069007", 078 "address", "Washington, DC, USA" 079 }) 080public class HOG implements ImageAnalyser<FImage> { 081 GradientOrientationHistogramExtractor extractor; 082 protected SpatialBinningStrategy strategy; 083 084 private transient Histogram currentHist; 085 086 /** 087 * Construct a new {@link HOG} with the 9 bins, using histogram 088 * interpolation and unsigned gradients. Use the given strategy to extract 089 * the actual features. 090 * 091 * @param strategy 092 * the {@link SpatialBinningStrategy} to use to produce the 093 * features 094 */ 095 public HOG(SpatialBinningStrategy strategy) 096 { 097 this(9, true, FImageGradients.Mode.Unsigned, strategy); 098 } 099 100 /** 101 * Construct a new {@link HOG} with the given number of bins. Optionally 102 * perform linear interpolation across orientation bins. Histograms can also 103 * use either signed or unsigned gradients. 104 * 105 * @param nbins 106 * number of bins 107 * @param histogramInterpolation 108 * if true cyclic linear interpolation is used to share the 109 * magnitude across the two closest bins; if false only the 110 * closest bin will be filled. 111 * @param orientationMode 112 * the range of orientations to extract 113 * @param strategy 114 * the {@link SpatialBinningStrategy} to use to produce the 115 * features 116 */ 117 public HOG(int nbins, boolean histogramInterpolation, FImageGradients.Mode orientationMode, 118 SpatialBinningStrategy strategy) 119 { 120 this.extractor = new GradientOrientationHistogramExtractor(nbins, histogramInterpolation, orientationMode); 121 122 this.strategy = strategy; 123 } 124 125 @Override 126 public void analyseImage(FImage image) { 127 extractor.analyseImage(image); 128 } 129 130 /** 131 * Analyse the given image, but construct the internal data such that the 132 * gradient magnitudes are multiplied by the given edge map before being 133 * accumulated. This could be used to suppress all magnitudes except those 134 * at edges; the resultant extracted histograms would only contain 135 * information about edge gradients. 136 * 137 * @param image 138 * the image to analyse 139 * @param edges 140 * the edge image 141 */ 142 public void analyseImage(FImage image, FImage edges) { 143 extractor.analyseImage(image, edges); 144 } 145 146 /** 147 * Compute the HOG feature for the given window. 148 * 149 * @param rectangle 150 * the window 151 * @return the computed HOG feature 152 */ 153 public Histogram getFeatureVector(Rectangle rectangle) { 154 return currentHist = strategy.extract(extractor, rectangle, currentHist); 155 } 156}