001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.feature.global; 031 032import org.apache.commons.math.stat.descriptive.SummaryStatistics; 033import org.openimaj.citation.annotation.Reference; 034import org.openimaj.citation.annotation.ReferenceType; 035import org.openimaj.feature.DoubleFV; 036import org.openimaj.feature.FeatureVectorProvider; 037import org.openimaj.image.FImage; 038import org.openimaj.image.analyser.ImageAnalyser; 039import org.openimaj.image.mask.AbstractMaskedObject; 040import org.openimaj.image.processing.convolution.AverageBoxFilter; 041import org.openimaj.image.processing.convolution.Laplacian3x3; 042 043/** 044 * Sharpness measures the clarity and level of detail of an image. This class 045 * measures the variation in sharpness of an image as a function of its 046 * Laplacian, normalized by the local average luminance in the surroundings of 047 * each pixel. 048 * 049 * @author Jonathon Hare 050 */ 051@Reference( 052 type = ReferenceType.Inproceedings, 053 author = { "Jose San Pedro", "Stefan Siersdorfer" }, 054 title = "Ranking and Classifying Attractiveness of Photos in Folksonomies", 055 year = "2009", 056 booktitle = "18th International World Wide Web Conference", 057 pages = { "771", "", "771" }, 058 url = "http://www2009.eprints.org/78/", 059 month = "April") 060public class SharpnessVariation extends AbstractMaskedObject<FImage> 061 implements 062 ImageAnalyser<FImage>, 063 FeatureVectorProvider<DoubleFV> 064{ 065 private final Laplacian3x3 laplacian = new Laplacian3x3(); 066 private final AverageBoxFilter average = new AverageBoxFilter(3, 3); 067 068 protected double sharpnessVariation; 069 070 /** 071 * Construct with no mask set 072 */ 073 public SharpnessVariation() { 074 super(); 075 } 076 077 /** 078 * Construct with a mask. 079 * 080 * @param mask 081 * the mask. 082 */ 083 public SharpnessVariation(FImage mask) { 084 super(mask); 085 } 086 087 @Override 088 public DoubleFV getFeatureVector() { 089 return new DoubleFV(new double[] { sharpnessVariation }); 090 } 091 092 @Override 093 public void analyseImage(FImage image) { 094 final FImage limg = image.process(laplacian); 095 final FImage aimg = image.process(average); 096 097 final SummaryStatistics stats = new SummaryStatistics(); 098 for (int r = 0; r < limg.height; r++) { 099 for (int c = 0; c < limg.width; c++) { 100 if (mask != null && mask.pixels[r][c] == 0) 101 continue; 102 103 if (aimg.pixels[r][c] != 0) { 104 stats.addValue(Math.abs(limg.pixels[r][c] / aimg.pixels[r][c])); 105 } 106 } 107 } 108 109 sharpnessVariation = stats.getStandardDeviation(); 110 } 111 112 /** 113 * Get the variation in sharpness of the last image processed with 114 * {@link #analyseImage(FImage)}. 115 * 116 * @return the sharpness variation value 117 */ 118 public double getSharpnessVariation() { 119 return sharpnessVariation; 120 } 121}