001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.feature.local.aggregate; 031 032import java.util.ArrayList; 033import java.util.Collection; 034import java.util.List; 035 036import org.openimaj.feature.ArrayFeatureVector; 037import org.openimaj.feature.SparseIntFV; 038import org.openimaj.feature.local.LocalFeature; 039import org.openimaj.feature.local.Location; 040import org.openimaj.feature.local.quantised.QuantisedLocalFeature; 041import org.openimaj.ml.clustering.assignment.HardAssigner; 042 043/** 044 * Implementation of an object capable of extracting basic (hard-assignment) Bag 045 * of Visual Words (BoVW) representations of an image given a list of local 046 * features and an {@link HardAssigner} with an associated codebook. 047 * 048 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 049 * 050 * @param <T> 051 * Primitive array type of the {@link ArrayFeatureVector}s used by 052 * the {@link LocalFeature}s that will be processed. 053 */ 054public class BagOfVisualWords<T> implements VectorAggregator<ArrayFeatureVector<T>, SparseIntFV> { 055 private HardAssigner<T, ?, ?> assigner; 056 057 /** 058 * Construct with the given assigner. 059 * 060 * @param assigner 061 * the assigner 062 */ 063 public BagOfVisualWords(HardAssigner<T, ?, ?> assigner) { 064 this.assigner = assigner; 065 } 066 067 /** 068 * Utility method to construct a list of quantised local features (local 069 * features with visual word assignments) from a list of features and a 070 * {@link HardAssigner}. 071 * 072 * @param assigner 073 * the assigner to apply to the feature vectors to create the 074 * visual word identifiers 075 * @param features 076 * the features to process 077 * @return a list of features with visual word assignments 078 */ 079 public static <L extends Location, T> List<QuantisedLocalFeature<L>> computeQuantisedFeatures( 080 HardAssigner<T, ?, ?> assigner, 081 List<? extends LocalFeature<L, ? extends ArrayFeatureVector<T>>> features) 082 { 083 final List<QuantisedLocalFeature<L>> out = new ArrayList<QuantisedLocalFeature<L>>(features.size()); 084 085 for (final LocalFeature<L, ? extends ArrayFeatureVector<T>> f : features) { 086 final int idx = assigner.assign(f.getFeatureVector().values); 087 out.add(new QuantisedLocalFeature<L>(f.getLocation(), idx)); 088 } 089 090 return out; 091 } 092 093 /** 094 * Utility method to quickly convert a collection of quantised local 095 * features to a histogram of their corresponding visual word identifiers. 096 * 097 * @param qfeatures 098 * the quantised features. 099 * @param nfeatures 100 * the number of visual words. 101 * @return a histogram of the occurrences of the visual words 102 */ 103 public static <L extends Location> 104 SparseIntFV 105 extractFeatureFromQuantised(Collection<? extends QuantisedLocalFeature<L>> qfeatures, final int nfeatures) 106 { 107 final SparseIntFV fv = new SparseIntFV(nfeatures); 108 109 for (final QuantisedLocalFeature<L> qf : qfeatures) { 110 fv.values.increment(qf.id, 1); 111 } 112 113 return fv; 114 } 115 116 @Override 117 public SparseIntFV aggregate(List<? extends LocalFeature<?, ? extends ArrayFeatureVector<T>>> features) { 118 final SparseIntFV fv = new SparseIntFV(this.assigner.size()); 119 120 for (final LocalFeature<?, ? extends ArrayFeatureVector<T>> f : features) { 121 final int idx = assigner.assign(f.getFeatureVector().values); 122 123 fv.values.increment(idx, 1); 124 } 125 126 return fv; 127 } 128 129 @Override 130 public SparseIntFV aggregateVectors(List<? extends ArrayFeatureVector<T>> features) { 131 final SparseIntFV fv = new SparseIntFV(this.assigner.size()); 132 133 for (final ArrayFeatureVector<T> f : features) { 134 final int idx = assigner.assign(f.values); 135 136 fv.values.increment(idx, 1); 137 } 138 139 return fv; 140 } 141 142 /** 143 * Aggregate the given features into a vector. 144 * 145 * @param features 146 * the features to aggregate 147 * @return the aggregated vector 148 */ 149 public SparseIntFV aggregateVectorsRaw(List<T> features) { 150 final SparseIntFV fv = new SparseIntFV(this.assigner.size()); 151 152 for (final T f : features) { 153 final int idx = assigner.assign(f); 154 155 fv.values.increment(idx, 1); 156 } 157 158 return fv; 159 } 160}