001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.feature.local.aggregate; 031 032import java.util.List; 033 034import org.openimaj.feature.ArrayFeatureVector; 035import org.openimaj.feature.SparseDoubleFV; 036import org.openimaj.feature.local.LocalFeature; 037import org.openimaj.ml.clustering.assignment.SoftAssigner; 038import org.openimaj.util.pair.IndependentPair; 039 040/** 041 * Implementation of an object capable of extracting the soft-assigned Bag of 042 * Visual Words (BoVW) representation of an image given a list of local features 043 * and an {@link SoftAssigner} with an associated codebook. Soft-assignment 044 * assigns a single feature to multiple visual words, usually with some 045 * weighting for each word. 046 * 047 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 048 * 049 * @param <DATATYPE> 050 * Primitive array type of the {@link ArrayFeatureVector}s used by 051 * the {@link LocalFeature}s that will be processed. 052 * @param <DISTANCE> 053 * Primitive array datatype for recording distances between points 054 * and cluster centroids 055 */ 056public class SoftBagOfVisualWords<DATATYPE, DISTANCE> 057implements 058VectorAggregator<ArrayFeatureVector<DATATYPE>, SparseDoubleFV> 059{ 060 private SoftAssigner<DATATYPE, DISTANCE> assigner; 061 062 /** 063 * Construct with the given assigner. 064 * 065 * @param assigner 066 * the assigner 067 */ 068 public SoftBagOfVisualWords(SoftAssigner<DATATYPE, DISTANCE> assigner) { 069 this.assigner = assigner; 070 } 071 072 @Override 073 public SparseDoubleFV aggregate(List<? extends LocalFeature<?, ? extends ArrayFeatureVector<DATATYPE>>> features) { 074 final SparseDoubleFV fv = new SparseDoubleFV(assigner.size()); 075 076 for (final LocalFeature<?, ? extends ArrayFeatureVector<DATATYPE>> f : features) { 077 final IndependentPair<int[], DISTANCE> a = assigner.assignWeighted(f.getFeatureVector().values); 078 079 increment(fv, a); 080 } 081 082 return fv; 083 } 084 085 @Override 086 public SparseDoubleFV aggregateVectors(List<? extends ArrayFeatureVector<DATATYPE>> features) { 087 final SparseDoubleFV fv = new SparseDoubleFV(assigner.size()); 088 089 for (final ArrayFeatureVector<DATATYPE> f : features) { 090 final IndependentPair<int[], DISTANCE> a = assigner.assignWeighted(f.values); 091 092 increment(fv, a); 093 } 094 095 return fv; 096 } 097 098 /** 099 * Aggregate the given features into a vector. 100 * 101 * @param features 102 * the features to aggregate 103 * @return the aggregated vector 104 */ 105 public SparseDoubleFV aggregateVectorsRaw(List<DATATYPE> features) { 106 final SparseDoubleFV fv = new SparseDoubleFV(assigner.size()); 107 108 for (final DATATYPE f : features) { 109 final IndependentPair<int[], DISTANCE> a = assigner.assignWeighted(f); 110 111 increment(fv, a); 112 } 113 114 return fv; 115 } 116 117 private void increment(SparseDoubleFV fv, IndependentPair<int[], DISTANCE> a) { 118 final int[] assignments = a.firstObject(); 119 final DISTANCE distances = a.getSecondObject(); 120 121 if (distances instanceof byte[]) { 122 for (int i = 0; i < assignments.length; i++) { 123 fv.values.increment(assignments[i], ((byte[]) distances)[i]); 124 } 125 } else if (distances instanceof short[]) { 126 for (int i = 0; i < assignments.length; i++) { 127 fv.values.increment(assignments[i], ((short[]) distances)[i]); 128 } 129 } else if (distances instanceof int[]) { 130 for (int i = 0; i < assignments.length; i++) { 131 fv.values.increment(assignments[i], ((int[]) distances)[i]); 132 } 133 } else if (distances instanceof long[]) { 134 for (int i = 0; i < assignments.length; i++) { 135 fv.values.increment(assignments[i], ((long[]) distances)[i]); 136 } 137 } else if (distances instanceof float[]) { 138 for (int i = 0; i < assignments.length; i++) { 139 fv.values.increment(assignments[i], ((float[]) distances)[i]); 140 } 141 } else if (distances instanceof double[]) { 142 for (int i = 0; i < assignments.length; i++) { 143 fv.values.increment(assignments[i], ((double[]) distances)[i]); 144 } 145 } else { 146 throw new UnsupportedOperationException("Unsupported type"); 147 } 148 } 149}