001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.model.patch; 031 032import java.util.List; 033 034import org.openimaj.image.FImage; 035import org.openimaj.image.Image; 036import org.openimaj.image.model.ImageClassificationModel; 037import org.openimaj.util.pair.IndependentPair; 038 039/** 040 * An {@link ImageClassificationModel} based on the idea of determining the 041 * probability of a class of a pixel given the local patch of pixels surrounding 042 * the pixel in question. A sliding window of a given size is moved across the 043 * image (with overlap), and the contents of the window are analysed to 044 * determine the probability belonging to the pixel at the centre of the window. 045 * 046 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 047 * 048 * @param <Q> 049 * Type of pixel 050 * @param <T> 051 * Type of {@link Image} 052 */ 053public abstract class PatchClassificationModel<Q, T extends Image<Q, T>> implements ImageClassificationModel<T> { 054 private static final long serialVersionUID = 1L; 055 056 protected int patchHeight, patchWidth; 057 058 /** 059 * Construct with the given dimensions for the sampling patch. 060 * 061 * @param patchWidth 062 * the width of the sampling patch 063 * @param patchHeight 064 * the height of the sampling patch 065 */ 066 public PatchClassificationModel(int patchWidth, int patchHeight) { 067 this.patchHeight = patchHeight; 068 this.patchWidth = patchWidth; 069 } 070 071 /** 072 * Classify a patch, returning the probability of the central pixel 073 * belonging to the class. 074 * 075 * @param patch 076 * the patch. 077 * @return the probability of the central pixel belonging to the class. 078 */ 079 public abstract float classifyPatch(T patch); 080 081 @Override 082 public FImage classifyImage(T im) { 083 final FImage out = new FImage(im.getWidth(), im.getHeight()); 084 final T roi = im.newInstance(patchWidth, patchHeight); 085 086 final int hh = patchHeight / 2; 087 final int hw = patchWidth / 2; 088 089 for (int y = hh; y < im.getHeight() - (patchHeight - hh); y++) { 090 for (int x = hw; x < im.getWidth() - (patchWidth - hw); x++) { 091 im.extractROI(x - hw, y - hh, roi); 092 out.pixels[y][x] = this.classifyPatch(roi); 093 } 094 } 095 096 return out; 097 } 098 099 @Override 100 public abstract PatchClassificationModel<Q, T> clone(); 101 102 protected abstract T[] getArray(int length); 103 104 @Override 105 public boolean estimate(List<? extends IndependentPair<T, FImage>> data) { 106 final T[] samples = getArray(data.size()); 107 for (int i = 0; i < data.size(); i++) { 108 samples[i] = data.get(i).firstObject(); 109 } 110 learnModel(samples); 111 112 return true; 113 } 114 115 @Override 116 public int numItemsToEstimate() { 117 return 1; // need a minimum of 1 sample 118 } 119 120 @Override 121 public FImage predict(T data) { 122 return classifyImage(data); 123 } 124}