001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.model.pixel; 031 032import org.openimaj.image.MBFImage; 033import org.openimaj.image.pixel.statistics.HistogramModel; 034 035/** 036 * An {@link MBFPixelClassificationModel} that classifies an individual pixel by 037 * comparing it to a joint (colour) histogram. The histogram is learnt from the 038 * positive pixel samples given in training. The probability returned by the 039 * classification is determined from the value of the histogram bin in which the 040 * pixel being classified falls. 041 * 042 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 043 */ 044public class HistogramPixelModel extends MBFPixelClassificationModel { 045 private static final long serialVersionUID = 1L; 046 047 /** 048 * The model histogram; public for speed. 049 */ 050 public HistogramModel model; 051 052 /** 053 * Construct with the given number of histogram bins per dimension. 054 * 055 * @param nbins 056 * number of bins per dimension. 057 */ 058 public HistogramPixelModel(int... nbins) { 059 super(nbins.length); 060 model = new HistogramModel(nbins); 061 } 062 063 @Override 064 protected float classifyPixel(Float[] pix) { 065 int bin = 0; 066 067 for (int i = 0; i < ndims; i++) { 068 int b = (int) (pix[i] * (model.histogram.nbins[i])); 069 if (b >= model.histogram.nbins[i]) 070 b = model.histogram.nbins[i] - 1; 071 072 int f = 1; 073 for (int j = 0; j < i; j++) 074 f *= model.histogram.nbins[j]; 075 076 bin += f * b; 077 } 078 079 return (float) model.histogram.values[bin]; 080 } 081 082 @Override 083 public String toString() { 084 return model.toString(); 085 } 086 087 @Override 088 public HistogramPixelModel clone() { 089 final HistogramPixelModel newmodel = new HistogramPixelModel(); 090 newmodel.model = model.clone(); 091 newmodel.ndims = ndims; 092 return newmodel; 093 } 094 095 @Override 096 public void learnModel(MBFImage... images) { 097 model.estimateModel(images); 098 } 099}