001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.model.pixel; 031 032import java.util.List; 033 034import org.openimaj.image.FImage; 035import org.openimaj.image.Image; 036import org.openimaj.image.model.ImageClassificationModel; 037import org.openimaj.util.pair.IndependentPair; 038 039/** 040 * Simple model for classifying pixels. When learning assumes ALL provided 041 * sample pixels are positive exemplars, and that anything not given is 042 * negative. 043 * 044 * @author Jonathon Hare 045 * @param <Q> 046 * Type of pixel 047 * @param <T> 048 * Type of image 049 * 050 */ 051public abstract class PixelClassificationModel<Q, T extends Image<Q, T>> implements ImageClassificationModel<T> { 052 private static final long serialVersionUID = 1L; 053 054 protected abstract float classifyPixel(Q pix); 055 056 @Override 057 public FImage classifyImage(T im) { 058 final FImage out = new FImage(im.getWidth(), im.getHeight()); 059 060 for (int y = 0; y < im.getHeight(); y++) { 061 for (int x = 0; x < im.getWidth(); x++) { 062 out.pixels[y][x] = classifyPixel(im.getPixel(x, y)); 063 } 064 } 065 066 return out; 067 } 068 069 protected abstract T[] getArray(int length); 070 071 @Override 072 public boolean estimate(List<? extends IndependentPair<T, FImage>> data) { 073 final T[] samples = getArray(data.size()); 074 for (int i = 0; i < data.size(); i++) { 075 samples[i] = data.get(i).firstObject(); 076 } 077 learnModel(samples); 078 return true; 079 } 080 081 @Override 082 public int numItemsToEstimate() { 083 return 1; // need a minimum of 1 sample 084 } 085 086 @Override 087 public FImage predict(T data) { 088 return classifyImage(data); 089 } 090 091 @Override 092 public abstract PixelClassificationModel<Q, T> clone(); 093}