001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.image.model.pixel;
031
032import java.util.ArrayList;
033import java.util.List;
034
035import org.openimaj.image.MBFImage;
036import org.openimaj.math.statistics.distribution.CachingMultivariateGaussian;
037
038/**
039 * An {@link MBFPixelClassificationModel} that classifies an individual pixel by
040 * comparing it to a {@link CachingMultivariateGaussian}. The Gaussian is learnt
041 * from the values of the positive pixel samples given in training. The
042 * probability returned by the classification is determined from the PDF of the
043 * Gaussian at the given pixel.
044 * 
045 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
046 */
047public class SingleGaussianPixelModel extends MBFPixelClassificationModel {
048        private static final long serialVersionUID = 1L;
049        protected CachingMultivariateGaussian gauss;
050
051        /**
052         * Construct with the given number of dimensions. This should be equal to
053         * the number of bands in the {@link MBFImage}s you wish to classify.
054         * 
055         * @param ndims
056         *            the number of dimensions.
057         */
058        public SingleGaussianPixelModel(int ndims) {
059                super(ndims);
060        }
061
062        @Override
063        protected float classifyPixel(Float[] pix) {
064                return (float) gauss.estimateProbability(pix);
065        }
066
067        @Override
068        public void learnModel(MBFImage... images) {
069                final List<float[]> data = new ArrayList<float[]>();
070
071                for (int i = 0; i < images.length; i++) {
072
073                        for (int y = 0; y < images[i].getHeight(); y++) {
074                                for (int x = 0; x < images[i].getWidth(); x++) {
075                                        final float[] d = new float[ndims];
076
077                                        for (int j = 0; j < ndims; j++) {
078                                                d[j] = images[i].getBand(j).pixels[y][x];
079                                        }
080
081                                        data.add(d);
082                                }
083                        }
084                }
085
086                final float[][] arraydata = data.toArray(new float[data.size()][ndims]);
087
088                gauss = CachingMultivariateGaussian.estimate(arraydata);
089        }
090
091        @Override
092        public SingleGaussianPixelModel clone() {
093                final SingleGaussianPixelModel model = new SingleGaussianPixelModel(ndims);
094                model.gauss = new CachingMultivariateGaussian(gauss.getMean().copy(), gauss.getCovariance().copy());
095
096                return null;
097        }
098}