001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.model.pixel; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.image.MBFImage; 036import org.openimaj.math.statistics.distribution.CachingMultivariateGaussian; 037 038/** 039 * An {@link MBFPixelClassificationModel} that classifies an individual pixel by 040 * comparing it to a {@link CachingMultivariateGaussian}. The Gaussian is learnt 041 * from the values of the positive pixel samples given in training. The 042 * probability returned by the classification is determined from the PDF of the 043 * Gaussian at the given pixel. 044 * 045 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 046 */ 047public class SingleGaussianPixelModel extends MBFPixelClassificationModel { 048 private static final long serialVersionUID = 1L; 049 protected CachingMultivariateGaussian gauss; 050 051 /** 052 * Construct with the given number of dimensions. This should be equal to 053 * the number of bands in the {@link MBFImage}s you wish to classify. 054 * 055 * @param ndims 056 * the number of dimensions. 057 */ 058 public SingleGaussianPixelModel(int ndims) { 059 super(ndims); 060 } 061 062 @Override 063 protected float classifyPixel(Float[] pix) { 064 return (float) gauss.estimateProbability(pix); 065 } 066 067 @Override 068 public void learnModel(MBFImage... images) { 069 final List<float[]> data = new ArrayList<float[]>(); 070 071 for (int i = 0; i < images.length; i++) { 072 073 for (int y = 0; y < images[i].getHeight(); y++) { 074 for (int x = 0; x < images[i].getWidth(); x++) { 075 final float[] d = new float[ndims]; 076 077 for (int j = 0; j < ndims; j++) { 078 d[j] = images[i].getBand(j).pixels[y][x]; 079 } 080 081 data.add(d); 082 } 083 } 084 } 085 086 final float[][] arraydata = data.toArray(new float[data.size()][ndims]); 087 088 gauss = CachingMultivariateGaussian.estimate(arraydata); 089 } 090 091 @Override 092 public SingleGaussianPixelModel clone() { 093 final SingleGaussianPixelModel model = new SingleGaussianPixelModel(ndims); 094 model.gauss = new CachingMultivariateGaussian(gauss.getMean().copy(), gauss.getCovariance().copy()); 095 096 return null; 097 } 098}