001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.objectdetection.haar.training; 031 032import java.util.List; 033 034import org.openimaj.image.analysis.algorithm.SummedSqTiltAreaTable; 035import org.openimaj.image.objectdetection.haar.HaarFeature; 036import org.openimaj.ml.classification.LabelledDataProvider; 037import org.openimaj.util.array.ArrayUtils; 038 039public class BasicTrainingData implements LabelledDataProvider { 040 SummedSqTiltAreaTable[] sats; 041 boolean[] classes; 042 HaarFeature[] features; 043 044 public BasicTrainingData(List<SummedSqTiltAreaTable> positive, List<SummedSqTiltAreaTable> negative, 045 List<HaarFeature> features) 046 { 047 sats = new SummedSqTiltAreaTable[positive.size() + negative.size()]; 048 classes = new boolean[sats.length]; 049 050 int count = 0; 051 for (final SummedSqTiltAreaTable t : positive) { 052 sats[count] = t; 053 classes[count] = true; 054 ++count; 055 } 056 057 for (final SummedSqTiltAreaTable t : negative) { 058 sats[count] = t; 059 classes[count] = false; 060 ++count; 061 } 062 063 this.features = features.toArray(new HaarFeature[features.size()]); 064 } 065 066 @Override 067 public float[] getFeatureResponse(int dimension) { 068 final float[] response = new float[sats.length]; 069 070 for (int i = 0; i < sats.length; i++) { 071 final float wvNorm = computeWindowVarianceNorm(sats[i]); 072 073 response[i] = features[dimension].computeResponse(sats[i], 0, 0) / wvNorm; 074 } 075 076 return response; 077 } 078 079 @Override 080 public boolean[] getClasses() { 081 return classes; 082 } 083 084 @Override 085 public int numInstances() { 086 return classes.length; 087 } 088 089 @Override 090 public int numDimensions() { 091 return features.length; 092 } 093 094 float computeWindowVarianceNorm(SummedSqTiltAreaTable sat) { 095 final int w = sat.sum.width - 1 - 2; 096 final int h = sat.sum.height - 1 - 2; 097 098 final int x = 1; // shift by 1 scaled px to centre box 099 final int y = 1; 100 101 final float sum = sat.sum.pixels[y + h][x + w] + sat.sum.pixels[y][x] - 102 sat.sum.pixels[y + h][x] - sat.sum.pixels[y][x + w]; 103 final float sqSum = sat.sqSum.pixels[y + w][x + w] + sat.sqSum.pixels[y][x] - 104 sat.sqSum.pixels[y + w][x] - sat.sqSum.pixels[y][x + w]; 105 106 final float cachedInvArea = 1.0f / (w * h); 107 final float mean = sum * cachedInvArea; 108 float wvNorm = sqSum * cachedInvArea - mean * mean; 109 wvNorm = (float) ((wvNorm >= 0) ? Math.sqrt(wvNorm) : 1); 110 111 return wvNorm; 112 } 113 114 @Override 115 public float[] getInstanceFeature(int idx) { 116 final float[] feature = new float[features.length]; 117 final SummedSqTiltAreaTable sat = sats[idx]; 118 119 final float wvNorm = computeWindowVarianceNorm(sat); 120 121 for (int i = 0; i < features.length; i++) { 122 feature[i] = features[i].computeResponse(sat, 0, 0) / wvNorm; 123 } 124 125 return feature; 126 } 127 128 @Override 129 public int[] getSortedResponseIndices(int d) { 130 return ArrayUtils.indexSort(getFeatureResponse(d)); 131 } 132 133 public HaarFeature getFeature(int dimension) { 134 return features[dimension]; 135 } 136}