001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.pixel.statistics; 031 032import gnu.trove.list.array.TFloatArrayList; 033import gnu.trove.map.hash.TIntIntHashMap; 034import gnu.trove.procedure.TIntIntProcedure; 035 036import org.openimaj.image.FImage; 037import org.openimaj.image.MBFImage; 038 039import static java.lang.Math.sqrt; 040 041/** 042 * A model of the all the values of the pixels in an image or set of images, 043 * using basic descriptive statistics (mean, mode, median, range, variance). 044 * 045 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 046 */ 047public class BasicDescriptiveStatisticsModel extends AbstractPixelStatisticsModel { 048 private static final long serialVersionUID = 1L; 049 050 /** 051 * The mean pixel value 052 */ 053 public double [] mean; 054 055 /** 056 * The mode of pixel values 057 */ 058 public double [] mode; 059 060 /** 061 * The median of pixel values 062 */ 063 public double [] median; 064 065 /** 066 * The range of pixel values 067 */ 068 public double [] range; 069 070 /** 071 * The variance of pixel values 072 */ 073 public double [] variance; 074 075 /** 076 * Construct a BasicDescriptiveStatisticsModel with the given 077 * number of dimensions. The number of dimensions should normally 078 * be equal to the number of bands in the images from which the model 079 * is to be estimated. 080 * 081 * @param ndims number of dimensions 082 */ 083 public BasicDescriptiveStatisticsModel(int ndims) { 084 super(ndims); 085 086 mean = new double[ndims]; 087 mode = new double[ndims]; 088 median = new double[ndims]; 089 range = new double[ndims]; 090 variance = new double[ndims]; 091 } 092 093 @Override 094 public void estimateModel(MBFImage... images) { 095 for (int i=0; i<ndims; i++) { 096 mean[i] = 0; 097 TFloatArrayList values = new TFloatArrayList(); 098 TIntIntHashMap freqs = new TIntIntHashMap(); 099 100 int count = 0; 101 for (MBFImage im : images) { 102 FImage band = im.getBand(i); 103 104 for (int r=0; r<band.height; r++) { 105 for (int c=0; c<band.width; c++) { 106 float val = band.pixels[r][c]; 107 mean[i] += val; 108 values.add(val); 109 freqs.adjustOrPutValue(Math.round(val*255F), 1, 1); 110 count++; 111 } 112 } 113 } 114 115 //mean 116 mean[i] /= count; 117 118 //median 119 values.sort(); 120 int idx = values.size() / 2; 121 if (values.size() % 2 == 0) { 122 median[i] = (values.get(idx) + values.get(idx - 1)) / 2.0; 123 } else { 124 median[i] = values.get(idx); 125 } 126 127 //mode 128 HashMax hm = new HashMax(); 129 freqs.forEachEntry(hm); 130 mode[i] = hm.idx / 255.0; 131 132 //range 133 range[i] = values.get(values.size() - 1) - values.get(0); 134 135 //variance 136 variance[i] = 0; 137 for (int j=0; j<values.size(); j++) { 138 variance[i] += (values.get(j) - mean[i]) * (values.get(j) - mean[i]); 139 } 140 variance[i] = sqrt(variance[i] / values.size()); 141 } 142 } 143 144 @Override 145 public String toString() { 146 String desc = ""; 147 for (int i=0; i<ndims; i++) desc += String.format("%2.2f, ", mean[i]); 148 for (int i=0; i<ndims; i++) desc += String.format("%2.2f, ", mode[i]); 149 for (int i=0; i<ndims; i++) desc += String.format("%2.2f, ", median[i]); 150 for (int i=0; i<ndims; i++) desc += String.format("%2.2f, ", range[i]); 151 for (int i=0; i<ndims; i++) desc += String.format("%2.2f, ", variance[i]); 152 return desc.substring(0, desc.length()-2); 153 } 154} 155 156class HashMax implements TIntIntProcedure { 157 public int max = 0; 158 public int idx = -1; 159 160 @Override 161 public boolean execute(int key, int value) { 162 if (value > max) { 163 max = value; 164 idx = key; 165 } 166 return true; 167 } 168}