001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import org.openimaj.image.FImage; 033import org.openimaj.image.processor.SinglebandImageProcessor; 034 035import edu.emory.mathcs.jtransforms.fft.FloatFFT_2D; 036 037/** 038 * From the matlab implementation of DISCGAUSSFFT which uses an FFT to apply a gaussian kernel. 039 * The matlab docs: 040 * 041% DISCGAUSSFFT(pic, sigma2) -- Convolves an image by the 042% (separable) discrete analogue of the Gaussian kernel by 043% performing the convolution in the Fourier domain. 044% The parameter SIGMA2 is the variance of the kernel. 045 046% Reference: Lindeberg "Scale-space theory in computer vision", Kluwer, 1994. 047 * 048 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 049 * 050 */ 051public class FDiscGausConvolve implements SinglebandImageProcessor<Float, FImage> { 052 private float sigma2; 053 054 /** 055 * Construct with given variance 056 * @param sigma2 variance of the kernel 057 */ 058 public FDiscGausConvolve(float sigma2) { 059 this.sigma2 = sigma2; 060// this.fft = new FastFourierTransformer(); 061 } 062 063 @Override 064 public void processImage(FImage image) { 065 int cs = image.getCols(); 066 int rs = image.getRows(); 067 FloatFFT_2D fft = new FloatFFT_2D(rs,cs); 068 float[][] prepared = new float[rs][cs*2]; 069 for(int r = 0; r < rs ; r++){ 070 for(int c = 0; c < cs; c++){ 071 prepared[r][c*2] = image.pixels[r][c]; 072 prepared[r][1 + c*2] = 0; 073 } 074 } 075 fft.complexForward(prepared); 076 for(int y = 0; y < rs; y++){ 077 for(int x = 0; x < cs; x++){ 078 double xcos = Math.cos(2 * Math.PI * ((float)x/cs)); 079 double ycos = Math.cos(2 * Math.PI * ((float)y/rs)); 080 float multiply = (float) Math.exp(sigma2 * (xcos + ycos - 2)); 081 prepared[y][x*2] = prepared[y][x*2] * multiply; 082 prepared[y][1 + x*2] = prepared[y][1 + x*2] * multiply; 083 } 084 } 085 fft.complexInverse(prepared, true); 086 for(int r = 0; r < rs ; r++){ 087 for(int c = 0; c < cs; c++){ 088 image.pixels[r][c] = prepared[r][c*2]; 089 } 090 } 091 } 092}