001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.image.processing.convolution;
031
032import org.openimaj.image.FImage;
033import org.openimaj.image.processor.SinglebandImageProcessor;
034
035import edu.emory.mathcs.jtransforms.fft.FloatFFT_2D;
036
037/**
038 * From the matlab implementation of DISCGAUSSFFT which uses an FFT to apply a gaussian kernel.
039 * The matlab docs:
040 * 
041% DISCGAUSSFFT(pic, sigma2) -- Convolves an image by the
042% (separable) discrete analogue of the Gaussian kernel by
043% performing the convolution in the Fourier domain.
044% The parameter SIGMA2 is the variance of the kernel.
045
046% Reference: Lindeberg "Scale-space theory in computer vision", Kluwer, 1994.
047 * 
048 * @author Sina Samangooei (ss@ecs.soton.ac.uk)
049 *
050 */
051public class FDiscGausConvolve implements SinglebandImageProcessor<Float, FImage> {
052        private float sigma2;
053
054        /**
055         * Construct with given variance
056         * @param sigma2 variance of the kernel
057         */
058        public FDiscGausConvolve(float sigma2) {
059                this.sigma2 = sigma2;
060//              this.fft = new FastFourierTransformer();
061        }
062
063        @Override
064        public void processImage(FImage image) {
065                int cs = image.getCols();
066                int rs = image.getRows();
067                FloatFFT_2D fft = new FloatFFT_2D(rs,cs);
068                float[][] prepared = new float[rs][cs*2];
069                for(int r = 0; r < rs ; r++){
070                        for(int c = 0; c < cs; c++){
071                                prepared[r][c*2] = image.pixels[r][c];
072                                prepared[r][1 + c*2] = 0;
073                        }
074                }
075                fft.complexForward(prepared);
076                for(int y = 0; y < rs; y++){
077                        for(int x = 0; x < cs; x++){
078                                double xcos = Math.cos(2 * Math.PI * ((float)x/cs));
079                                double ycos = Math.cos(2 * Math.PI * ((float)y/rs));
080                                float multiply = (float) Math.exp(sigma2 * (xcos + ycos - 2));
081                                prepared[y][x*2] = prepared[y][x*2] * multiply;
082                                prepared[y][1 + x*2] = prepared[y][1 + x*2] * multiply;
083                        }
084                }
085                fft.complexInverse(prepared, true);
086                for(int r = 0; r < rs ; r++){
087                        for(int c = 0; c < cs; c++){
088                                image.pixels[r][c] = prepared[r][c*2];
089                        }
090                }
091        }
092}