001/**
002 * Copyright (c) 2011, The University of Southampton and the individual contributors.
003 * All rights reserved.
004 *
005 * Redistribution and use in source and binary forms, with or without modification,
006 * are permitted provided that the following conditions are met:
007 *
008 *   *  Redistributions of source code must retain the above copyright notice,
009 *      this list of conditions and the following disclaimer.
010 *
011 *   *  Redistributions in binary form must reproduce the above copyright notice,
012 *      this list of conditions and the following disclaimer in the documentation
013 *      and/or other materials provided with the distribution.
014 *
015 *   *  Neither the name of the University of Southampton nor the names of its
016 *      contributors may be used to endorse or promote products derived from this
017 *      software without specific prior written permission.
018 *
019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
029 */
030package org.openimaj.image.processing.convolution;
031
032import org.openimaj.citation.annotation.Reference;
033import org.openimaj.citation.annotation.ReferenceType;
034import org.openimaj.image.FImage;
035import org.openimaj.image.processor.SinglebandImageProcessor;
036
037/**
038 * Fast approximate Gaussian smoothing using repeated fast box filtering.
039 * 
040 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk)
041 * 
042 */
043@Reference(
044                type = ReferenceType.Inproceedings,
045                author = { "Kovesi, P." },
046                title = "Fast Almost-Gaussian Filtering",
047                year = "2010",
048                booktitle = "Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on",
049                pages = { "121", "125" },
050                month = "Dec",
051                customData = {
052                                "keywords", "Gaussian processes;approximation theory;band-pass filters;image processing;Gaussian bandpass filters;fast almost-Gaussian filtering;image averaging;integral images;log-Gabor filters;separable moving average filters;summed area tables;symmetric transfer function;Approximation methods;Bandwidth;Computer vision;Frequency domain analysis;Laplace equations;Pixel;Transfer functions;Difference of Gaussian filtering;Gaussian smoothing",
053                                "doi", "10.1109/DICTA.2010.30"
054                })
055public class FFastGaussianConvolve implements SinglebandImageProcessor<Float, FImage> {
056        private final int n;
057        private final int m;
058        private SinglebandImageProcessor<Float, FImage> wlBox;
059        private SinglebandImageProcessor<Float, FImage> wuBox;
060
061        /**
062         * Construct an {@link FFastGaussianConvolve} to approximate blurring with a
063         * Gaussian of standard deviation sigma.
064         * 
065         * @param sigma
066         *            Standard deviation of the approximated Gaussian
067         * @param n
068         *            Number of filtering iterations to perform (usually between 3
069         *            and 6)
070         */
071        public FFastGaussianConvolve(float sigma, int n) {
072                if (sigma < 1.8) {
073                        // std.devs of less than 1.8 are not well approximated.
074                        this.m = 1;
075                        this.n = 1;
076                        this.wlBox = new FGaussianConvolve(sigma);
077                } else {
078                        final float ss = sigma * sigma;
079                        final double wIdeal = Math.sqrt((12.0 * ss / n) + 1.0);
080                        final int wl = (((int) wIdeal) % 2 == 0) ? (int) wIdeal - 1 : (int) wIdeal;
081                        final int wu = wl + 2;
082
083                        this.n = n;
084                        this.m = Math.round((12 * ss - n * wl * wl - 4 * n * wl - 3 * n) / (-4 * wl - 4));
085
086                        this.wlBox = new AverageBoxFilter(wl);
087                        this.wuBox = new AverageBoxFilter(wu);
088                }
089        }
090
091        @Override
092        public void processImage(FImage image) {
093                for (int i = 0; i < m; i++)
094                        wlBox.processImage(image);
095                for (int i = 0; i < n - m; i++)
096                        wuBox.processImage(image);
097        }
098}