001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import org.openimaj.image.FImage; 033import org.openimaj.image.processor.SinglebandImageProcessor; 034 035/** 036 * Image processor for FImage capable of performing convolutions with Gaussians. 037 * 038 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 039 */ 040public class FGaussianConvolve implements SinglebandImageProcessor<Float, FImage> { 041 /** 042 * The default number of sigmas at which the Gaussian function is truncated 043 * when building a kernel 044 */ 045 public static final float DEFAULT_GAUSS_TRUNCATE = 4.0f; 046 047 protected float[] kernel; 048 049 /** 050 * Construct an {@link FGaussianConvolve} with a Gaussian of standard 051 * deviation sigma. 052 * 053 * @param sigma 054 * Gaussian kernel standard deviation 055 */ 056 public FGaussianConvolve(float sigma) { 057 this(sigma, DEFAULT_GAUSS_TRUNCATE); 058 } 059 060 /** 061 * Construct an {@link FGaussianConvolve} with a Gaussian of standard 062 * deviation sigma. The truncate parameter defines how many sigmas wide the 063 * kernel is. 064 * 065 * @param sigma 066 * @param truncate 067 */ 068 public FGaussianConvolve(float sigma, float truncate) { 069 kernel = makeKernel(sigma, truncate); 070 } 071 072 /** 073 * Construct a zero-mean Gaussian with the specified standard deviation. 074 * 075 * @param sigma 076 * the standard deviation of the Gaussian 077 * @return an array representing a Gaussian function 078 */ 079 public static float[] makeKernel(float sigma) { 080 return makeKernel(sigma, DEFAULT_GAUSS_TRUNCATE); 081 } 082 083 /** 084 * Construct a zero-mean Gaussian with the specified standard deviation. 085 * 086 * @param sigma 087 * the standard deviation of the Gaussian 088 * @param truncate 089 * the number of sigmas from the centre at which to truncate the 090 * Gaussian 091 * @return an array representing a Gaussian function 092 */ 093 public static float[] makeKernel(float sigma, float truncate) { 094 if (sigma == 0) 095 return new float[] { 1f }; 096 // The kernel is truncated at truncate sigmas from center. 097 int ksize = (int) (2.0f * truncate * sigma + 1.0f); 098 // ksize = Math.max(1, ksize); // size must be at least 3 099 if (ksize % 2 == 0) 100 ksize++; // size must be odd 101 102 final float[] kernel = new float[ksize]; 103 104 // build kernel 105 float sum = 0.0f; 106 for (int i = 0; i < ksize; i++) { 107 final float x = i - ksize / 2; 108 kernel[i] = (float) Math.exp(-x * x / (2.0 * sigma * sigma)); 109 sum += kernel[i]; 110 } 111 112 // normalise area to 1 113 for (int i = 0; i < ksize; i++) { 114 kernel[i] /= sum; 115 } 116 117 return kernel; 118 } 119 120 /* 121 * (non-Javadoc) 122 * 123 * @see 124 * org.openimaj.image.processor.ImageProcessor#processImage(org.openimaj 125 * .image.Image) 126 */ 127 @Override 128 public void processImage(FImage image) { 129 FImageConvolveSeparable.convolveHorizontal(image, kernel); 130 FImageConvolveSeparable.convolveVertical(image, kernel); 131 } 132}