001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import org.openimaj.image.FImage; 033import org.openimaj.image.processing.algorithm.FourierTransform; 034import org.openimaj.image.processor.SinglebandImageProcessor; 035 036import edu.emory.mathcs.jtransforms.fft.FloatFFT_2D; 037 038/** 039 * {@link FImage} convolution performed in the fourier domain. 040 * 041 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 042 * 043 */ 044public class FourierConvolve implements SinglebandImageProcessor<Float, FImage> { 045 private float[][] kernel; 046 047 /** 048 * Construct the convolution operator with the given kernel 049 * 050 * @param kernel 051 * the kernel 052 */ 053 public FourierConvolve(float[][] kernel) { 054 this.kernel = kernel; 055 } 056 057 /** 058 * Construct the convolution operator with the given kernel 059 * 060 * @param kernel 061 * the kernel 062 */ 063 public FourierConvolve(FImage kernel) { 064 this.kernel = kernel.pixels; 065 } 066 067 @Override 068 public void processImage(FImage image) { 069 convolve(image, kernel, true); 070 } 071 072 /** 073 * Convolve an image with a kernel using an FFT. 074 * 075 * @param image 076 * The image to convolve 077 * @param kernel 078 * The kernel 079 * @param inplace 080 * if true, then output overwrites the input, otherwise a new image 081 * is created. 082 * @return convolved image 083 */ 084 public static FImage convolve(FImage image, float[][] kernel, boolean inplace) { 085 final int cols = image.getCols(); 086 final int rows = image.getRows(); 087 088 final FloatFFT_2D fft = new FloatFFT_2D(rows, cols); 089 090 final float[][] preparedImage = FourierTransform.prepareData(image.pixels, rows, cols, false); 091 fft.complexForward(preparedImage); 092 093 final float[][] preparedKernel = FourierTransform.prepareData(kernel, rows, cols, false); 094 fft.complexForward(preparedKernel); 095 096 for (int y = 0; y < rows; y++) { 097 for (int x = 0; x < cols; x++) { 098 final float reImage = preparedImage[y][x * 2]; 099 final float imImage = preparedImage[y][1 + x * 2]; 100 101 final float reKernel = preparedKernel[y][x * 2]; 102 final float imKernel = preparedKernel[y][1 + x * 2]; 103 104 final float re = reImage * reKernel - imImage * imKernel; 105 final float im = reImage * imKernel + imImage * reKernel; 106 107 preparedImage[y][x * 2] = re; 108 preparedImage[y][1 + x * 2] = im; 109 } 110 } 111 112 fft.complexInverse(preparedImage, true); 113 114 FImage out = image; 115 if (!inplace) 116 out = new FImage(cols, rows); 117 118 FourierTransform.unprepareData(preparedImage, out, false); 119 120 return out; 121 } 122 123 /** 124 * Convolve an image with a pre-prepared frequency domain filter. The filter 125 * must have the same height as the image and twice the width (to account for 126 * the imaginary components). Real and imaginary components should be interlaced 127 * across the rows. 128 * 129 * @param image 130 * The image to convolve 131 * @param filter 132 * the prepared frequency domain filter 133 * @param centered 134 * true if the prepared filter has the highest frequency in the 135 * centre. 136 * @return convolved image 137 */ 138 public static FImage convolvePrepared(FImage image, FImage filter, boolean centered) { 139 final int cols = image.getCols(); 140 final int rows = image.getRows(); 141 142 final FloatFFT_2D fft = new FloatFFT_2D(rows, cols); 143 144 final float[][] preparedImage = FourierTransform.prepareData(image.pixels, rows, cols, centered); 145 fft.complexForward(preparedImage); 146 147 final float[][] preparedKernel = filter.pixels; 148 149 for (int y = 0; y < rows; y++) { 150 for (int x = 0; x < cols; x++) { 151 final float reImage = preparedImage[y][x * 2]; 152 final float imImage = preparedImage[y][1 + x * 2]; 153 154 final float reKernel = preparedKernel[y][x * 2]; 155 final float imKernel = preparedKernel[y][1 + x * 2]; 156 157 final float re = reImage * reKernel - imImage * imKernel; 158 final float im = reImage * imKernel + imImage * reKernel; 159 160 preparedImage[y][x * 2] = re; 161 preparedImage[y][1 + x * 2] = im; 162 } 163 } 164 165 fft.complexInverse(preparedImage, true); 166 167 final FImage out = new FImage(cols, rows); 168 FourierTransform.unprepareData(preparedImage, out, centered); 169 return out; 170 } 171}