001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import static java.lang.Math.exp; 033 034import org.openimaj.image.FImage; 035import org.openimaj.math.util.FloatArrayStatsUtils; 036 037/** 038 * Simple 2D Gaussian convolution. In most cases the {@link FGaussianConvolve} 039 * filter will do the same thing, but much much faster! 040 * 041 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 042 * 043 */ 044public class Gaussian2D extends FConvolution { 045 046 /** 047 * Construct with given kernel size and variance. 048 * 049 * @param width 050 * kernel width 051 * @param height 052 * kernel height 053 * @param sigma 054 * variance 055 */ 056 public Gaussian2D(int width, int height, float sigma) { 057 super(createKernelImage(width, height, sigma)); 058 } 059 060 /** 061 * Construct with given kernel size and variance. 062 * 063 * @param size 064 * kernel width/height 065 * @param sigma 066 * standard deviation 067 */ 068 public Gaussian2D(int size, float sigma) { 069 super(createKernelImage(size, size, sigma)); 070 } 071 072 /** 073 * Create a kernel image with given kernel size and standard deviation. 074 * 075 * @param size 076 * image height/width. 077 * @param sigma 078 * standard deviation. 079 * @return new kernel image. 080 */ 081 public static FImage createKernelImage(int size, float sigma) { 082 return createKernelImage(size, size, sigma); 083 } 084 085 /** 086 * Create a kernel image with given kernel size and standard deviation. 087 * 088 * @param width 089 * image width. 090 * @param height 091 * image height. 092 * @param sigma 093 * standard deviation. 094 * @return new kernel image. 095 */ 096 public static FImage createKernelImage(int width, int height, float sigma) { 097 final FImage f = new FImage(width, height); 098 final int hw = (width - 1) / 2; 099 final int hh = (height - 1) / 2; 100 final float sigmasq = sigma * sigma; 101 102 for (int y = -hh, j = 0; y <= hh; y++, j++) { 103 for (int x = -hw, i = 0; x <= hw; x++, i++) { 104 final int radsqrd = x * x + y * y; 105 f.pixels[j][i] = (float) exp(-radsqrd / (2 * sigmasq)); 106 } 107 } 108 final float sum = FloatArrayStatsUtils.sum(f.pixels); 109 return f.divideInplace(sum); 110 } 111}