001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.convolution; 031 032import static java.lang.Math.PI; 033import static java.lang.Math.exp; 034 035import org.openimaj.image.FImage; 036import org.openimaj.math.util.FloatArrayStatsUtils; 037 038/** 039 * 2D Laplacian of Gaussian filter 040 * 041 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 042 */ 043public class LaplacianOfGaussian2D extends FConvolution { 044 /** 045 * Construct with given kernel size and variance. 046 * @param width kernel width 047 * @param height kernel height 048 * @param sigma variance 049 */ 050 public LaplacianOfGaussian2D(int width, int height, float sigma) { 051 super(createKernelImage(width, height, sigma)); 052 } 053 054 /** 055 * Construct with given kernel size and variance. 056 * @param size kernel width/height 057 * @param sigma variance 058 */ 059 public LaplacianOfGaussian2D(int size, float sigma) { 060 super(createKernelImage(size, size, sigma)); 061 } 062 063 /** 064 * Create a kernel image with given kernel size and variance. 065 * @param size image height/width. 066 * @param sigma variance. 067 * @return new kernel image. 068 */ 069 public static FImage createKernelImage(int size, float sigma) { 070 return createKernelImage(size, size, sigma); 071 } 072 073 /** 074 * Create a kernel image with given kernel size and variance. 075 * @param width image width. 076 * @param height image height. 077 * @param sigma variance. 078 * @return new kernel image. 079 */ 080 public static FImage createKernelImage(int width, int height, float sigma) { 081 FImage f = new FImage(width, height); 082 int hw = (width-1)/2; 083 int hh = (height-1)/2; 084 float sigmasq = sigma * sigma; 085 float sigma4 = sigmasq*sigmasq; 086 087 for (int y=-hh, j=0; y<hh; y++, j++) { 088 for (int x=-hw, i=0; x<hw; x++, i++) { 089 int radsqrd = x*x + y*y; 090 f.pixels[j][i] = (float) (-1 / (PI*sigma4)*(1-radsqrd/(2*sigmasq))*exp(-radsqrd/(2*sigmasq))); 091 } 092 } 093 return f.subtractInplace(FloatArrayStatsUtils.mean(f.pixels)); 094 } 095}