001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.face.feature.ltp; 031 032import java.io.DataInput; 033import java.io.DataOutput; 034import java.io.IOException; 035 036import org.openimaj.citation.annotation.Reference; 037import org.openimaj.citation.annotation.ReferenceType; 038 039/** 040 * A Gaussian {@link LTPWeighting} function. 041 * 042 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 043 */ 044@Reference( 045 type = ReferenceType.Article, 046 author = { "Tan, Xiaoyang", "Triggs, Bill" }, 047 title = "Enhanced local texture feature sets for face recognition under difficult lighting conditions", 048 year = "2010", 049 journal = "Trans. Img. Proc.", 050 pages = { "1635", "1650" }, 051 url = "http://dx.doi.org/10.1109/TIP.2010.2042645", 052 month = "June", 053 number = "6", 054 publisher = "IEEE Press", 055 volume = "19" 056 ) 057public class GaussianWeighting implements LTPWeighting { 058 private float sigma = 3; 059 060 /** 061 * Construct with a default standard deviation of 3.0 062 */ 063 public GaussianWeighting() {} 064 065 /** 066 * Construct with the given standard deviation 067 * @param sigma the standard deviation 068 */ 069 public GaussianWeighting(float sigma) { 070 this.sigma= sigma; 071 } 072 073 @Override 074 public float weightDistance(float distance) { 075 return (float) Math.exp( -(distance * distance) / (sigma * sigma * 2)); 076 } 077 078 @Override 079 public void readBinary(DataInput in) throws IOException { 080 sigma = in.readFloat(); 081 } 082 083 @Override 084 public byte[] binaryHeader() { 085 return this.getClass().getName().getBytes(); 086 } 087 088 @Override 089 public void writeBinary(DataOutput out) throws IOException { 090 out.writeFloat(sigma); 091 } 092 093 @Override 094 public String toString() { 095 return "GaussianWeighting[sigma="+sigma+"]"; 096 } 097}