001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.image.processing.threshold; 031 032import org.openimaj.image.FImage; 033import org.openimaj.image.processing.convolution.FGaussianConvolve; 034import org.openimaj.image.processor.SinglebandImageProcessor; 035 036/** 037 * Adaptive local thresholding using the Gaussian weighted sum of the patch and 038 * an offset. 039 * 040 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 041 * 042 */ 043public class AdaptiveLocalThresholdGaussian implements SinglebandImageProcessor<Float, FImage> { 044 private float offset; 045 private float sigma; 046 047 /** 048 * Construct the thresholding operator with the given Gaussian standard 049 * deviation, sigma, and offset 050 * 051 * @param sigma 052 * Gaussian kernel standard deviation 053 * @param offset 054 * offset from the patch mean at which the threshold occurs 055 */ 056 public AdaptiveLocalThresholdGaussian(float sigma, float offset) { 057 this.sigma = sigma; 058 this.offset = offset; 059 } 060 061 @Override 062 public void processImage(FImage image) { 063 final FImage tmp = image.process(new FGaussianConvolve(sigma)); 064 065 final float[][] tpix = tmp.pixels; 066 final float[][] ipix = image.pixels; 067 for (int y = 0; y < image.height; y++) 068 for (int x = 0; x < image.width; x++) 069 tpix[y][x] = ipix[y][x] < (tpix[y][x] - offset) ? 0f : 1f; 070 071 image.internalAssign(tmp); 072 } 073}