001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/nearest-neighbour/src/main/jtemp/org/openimaj/knn/approximate/#T#NearestNeighboursKDTree.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.knn.approximate; 035 036import java.util.Arrays; 037import java.util.List; 038 039import org.openimaj.citation.annotation.Reference; 040import org.openimaj.citation.annotation.ReferenceType; 041import org.openimaj.knn.IntNearestNeighbours; 042import org.openimaj.knn.NearestNeighboursFactory; 043import org.openimaj.util.pair.*; 044 045/** 046 * Fast Nearest-Neighbours for int data using an ensemble of Best-Bin-First KDTrees. 047 * <p> 048 * Implementation inspired by http://www.robots.ox.ac.uk/~vgg/software/fastann/ 049 * 050 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 051 * @author Sina Samangooei (ss@ecs.soton.ac.uk) 052 */ 053@Reference( 054 type = ReferenceType.Inproceedings, 055 author = { "Marius Muja", "David G. Lowe" }, 056 title = "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", 057 year = "2009", 058 booktitle = "International Conference on Computer Vision Theory and Application VISSAPP'09)", 059 pages = { "331", "340" }, 060 publisher = "INSTICC Press" 061) 062public class IntNearestNeighboursKDTree extends IntNearestNeighbours { 063 /** 064 * {@link NearestNeighboursFactory} for producing 065 * {@link IntNearestNeighboursKDTree}s. 066 * 067 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 068 */ 069 public static final class Factory implements NearestNeighboursFactory<IntNearestNeighboursKDTree, int[]> { 070 int ntrees; 071 int nchecks; 072 073 /** 074 * Construct the factory the default number of trees and checks. 075 */ 076 public Factory() { 077 this.ntrees = IntNearestNeighboursKDTree.DEFAULT_NTREES; 078 this.nchecks = IntNearestNeighboursKDTree.DEFAULT_NCHECKS; 079 } 080 081 /** 082 * Construct the factory the given number of trees and checks. 083 * 084 * @param ntrees 085 * the number of trees 086 * @param nchecks 087 * the number of checks during search 088 */ 089 public Factory(int ntrees, int nchecks) { 090 this.ntrees = ntrees; 091 this.nchecks = nchecks; 092 } 093 094 @Override 095 public IntNearestNeighboursKDTree create(int[][] data) { 096 return new IntNearestNeighboursKDTree(data, ntrees, nchecks); 097 } 098 } 099 100 /** 101 * The default number of checks performed during search when in exact mode. 102 */ 103 public static final int DEFAULT_NCHECKS = 768; 104 105 /** 106 * The default number of kdtrees when not in exact mode. 107 */ 108 public static final int DEFAULT_NTREES = 8; 109 110 /** The ensemble of KDTrees */ 111 public final IntKDTreeEnsemble kdt; 112 113 /** The number of checks */ 114 public final int nchecks; 115 116 /** 117 * Construct the IntNearestNeighboursKDTree with the given options. 118 * 119 * @param pnts the data 120 * @param ntrees the number of trees 121 * @param nchecks the number of checks during search 122 */ 123 public IntNearestNeighboursKDTree(final int [][] pnts, int ntrees, int nchecks) { 124 kdt = new IntKDTreeEnsemble(pnts, ntrees); 125 this.nchecks = nchecks; 126 } 127 128 @Override 129 public int numDimensions() { 130 return kdt.pnts[0].length; 131 } 132 133 @Override 134 public int size() { 135 return kdt.pnts.length; 136 } 137 138 @Override 139 public void searchKNN(int[][] qus, int K, int[][] argmins, float[][] mins) { 140 // Fix for when the user asks for too many points. 141 K = Math.min(K, kdt.pnts.length); 142 143 IntFloatPair[] nns = new IntFloatPair[K]; 144 final int N = qus.length; 145 146 for (int n=0; n < N; ++n) { 147 kdt.search(qus[n], K, nns, nchecks); 148 for (int k=0; k < K; ++k) { 149 argmins[n][k] = nns[k].first; 150 mins[n][k] = nns[k].second; 151 } 152 } 153 } 154 155 @Override 156 public void searchNN(int[][] qus, int[] argmins, float[] mins) { 157 final int N = qus.length; 158 IntFloatPair [] nn = new IntFloatPair[1]; 159 160 for (int n=0; n < N; ++n) { 161 kdt.search(qus[n], 1, nn, nchecks); 162 163 argmins[n] = nn[0].first; 164 mins[n] = nn[0].second; 165 } 166 } 167 168 @Override 169 public void searchKNN(List<int[]> qus, int K, int[][] argmins, float[][] mins) { 170 // Fix for when the user asks for too many points. 171 K = Math.min(K, kdt.pnts.length); 172 173 IntFloatPair[] nns = new IntFloatPair[K]; 174 final int N = qus.size(); 175 176 for (int n=0; n < N; ++n) { 177 kdt.search(qus.get(n), K, nns, nchecks); 178 for (int k=0; k < K; ++k) { 179 argmins[n][k] = nns[k].first; 180 mins[n][k] = nns[k].second; 181 } 182 } 183 } 184 185 @Override 186 public void searchNN(List<int[]> qus, int[] argmins, float[] mins) { 187 final int N = qus.size(); 188 IntFloatPair [] nn = new IntFloatPair[1]; 189 190 for (int n=0; n < N; ++n) { 191 kdt.search(qus.get(n), 1, nn, nchecks); 192 193 argmins[n] = nn[0].first; 194 mins[n] = nn[0].second; 195 } 196 } 197 198 @Override 199 public List<IntFloatPair> searchKNN(int[] query, int K) { 200 // Fix for when the user asks for too many points. 201 K = Math.min(K, kdt.pnts.length); 202 203 final IntFloatPair[] nns = new IntFloatPair[K]; 204 205 kdt.search(query, K, nns, nchecks); 206 207 return Arrays.asList(nns); 208 } 209 210 @Override 211 public IntFloatPair searchNN(int[] query) { 212 final IntFloatPair[] nn = new IntFloatPair[1]; 213 214 kdt.search(query, 1, nn, nchecks); 215 216 return nn[0]; 217 } 218}