001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/nearest-neighbour/src/main/jtemp/org/openimaj/lsh/functions/#T#GaussianFactory.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.lsh.functions; 035 036import org.openimaj.feature.DoubleFVComparison; 037 038import cern.jet.random.Normal; 039import cern.jet.random.Uniform; 040import cern.jet.random.engine.MersenneTwister; 041 042/** 043 * A hash function factory for producing hash functions using Gaussian 044 * distributions to approximate the Euclidean distance. 045 * 046 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 047 */ 048public class DoubleGaussianFactory extends DoublePStableFactory { 049 private class Function extends PStableFunction { 050 Function(int ndims, MersenneTwister rng) { 051 super(rng); 052 053 final Uniform uniform = new Uniform(0, w, rng); 054 final Normal normal = new Normal(0, 1, rng); 055 056 b = (float) uniform.nextDouble(); 057 058 // random direction 059 r = new double[ndims]; 060 for (int i = 0; i < ndims; i++) { 061 r[i] = normal.nextDouble(); 062 } 063 } 064 } 065 066 /** 067 * Construct with the given parameters. 068 * 069 * @param ndims 070 * number of dimensions of the data 071 * @param rng 072 * the random number generator 073 * @param w 074 * the width parameter 075 */ 076 public DoubleGaussianFactory(int ndims, MersenneTwister rng, double w) { 077 super(ndims, rng, w); 078 } 079 080 @Override 081 public Function create() { 082 return new Function(ndims, rng); 083 } 084 085 @Override 086 protected DoubleFVComparison fvDistanceFunction() { 087 return DoubleFVComparison.EUCLIDEAN; 088 } 089}