001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/nearest-neighbour/src/main/jtemp/org/openimaj/lsh/functions/#T#HashFunction.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.lsh.functions; 035 036import cern.jet.random.engine.MersenneTwister; 037 038import org.openimaj.feature.DoubleFV; 039import org.openimaj.feature.SparseDoubleFV; 040import org.openimaj.util.array.SparseDoubleArray; 041 042/** 043 * Base {@link RandomisedHashFunction} for hashing double arrays. 044 * 045 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 046 */ 047public abstract class DoubleHashFunction extends RandomisedHashFunction<double[]> { 048 /** 049 * Default constructor 050 * 051 * @param factory 052 * factory to use 053 * @param rng 054 * random generator 055 */ 056 DoubleHashFunction(MersenneTwister rng) { 057 super(rng); 058 } 059 060 /** 061 * Compute the hash code for the feature vector. 062 * 063 * @param feature 064 * the feature vector 065 * 066 * @return the hash code 067 */ 068 public final int computeHashCode(DoubleFV feature) { 069 return computeHashCode(feature.values); 070 } 071 072 /** 073 * Compute the hash code for the sparse array. This method 074 * converts the sparse array to a dense one and computes the 075 * hash code from that. Subclasses should override this method 076 * for improved performance. 077 * 078 * @param array 079 * the sparse array 080 * 081 * @return the hash code 082 */ 083 public int computeHashCode(SparseDoubleArray array) { 084 return computeHashCode(array.toArray()); 085 } 086 087 /** 088 * Compute the hash code for the sparse feature vector. 089 * 090 * @param feature 091 * the sparse feature 092 * 093 * @return the hash code 094 */ 095 public final int computeHashCode(SparseDoubleFV feature) { 096 return computeHashCode(feature.values); 097 } 098}