001/* 002 AUTOMATICALLY GENERATED BY jTemp FROM 003 /Users/jsh2/Work/openimaj/target/checkout/machine-learning/nearest-neighbour/src/main/jtemp/org/openimaj/lsh/functions/#T#HyperplaneL1Factory.jtemp 004*/ 005/** 006 * Copyright (c) 2011, The University of Southampton and the individual contributors. 007 * All rights reserved. 008 * 009 * Redistribution and use in source and binary forms, with or without modification, 010 * are permitted provided that the following conditions are met: 011 * 012 * * Redistributions of source code must retain the above copyright notice, 013 * this list of conditions and the following disclaimer. 014 * 015 * * Redistributions in binary form must reproduce the above copyright notice, 016 * this list of conditions and the following disclaimer in the documentation 017 * and/or other materials provided with the distribution. 018 * 019 * * Neither the name of the University of Southampton nor the names of its 020 * contributors may be used to endorse or promote products derived from this 021 * software without specific prior written permission. 022 * 023 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 024 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 025 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 026 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 027 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 028 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 029 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 030 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 031 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 032 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 033 */ 034package org.openimaj.lsh.functions; 035 036import org.openimaj.citation.annotation.Reference; 037import org.openimaj.citation.annotation.ReferenceType; 038import org.openimaj.feature.LongFVComparison; 039import org.openimaj.util.array.SparseLongArray; 040 041import cern.jet.random.Uniform; 042import cern.jet.random.engine.MersenneTwister; 043 044/** 045 * A hash function factory that produces hash functions that approximate L1 046 * (city-block) distance in closed spaces using random axis-aligned hyperplanes. 047 * <p> 048 * The hash function hashes the input vector into a binary value (i.e. 0 or 1). 049 * It works by choosing a random dimension and a random threshold along that 050 * dimension (between a given minimum and maximum which define the closed space). 051 * Input vectors whose element at the chosen dimension is greater than or equal 052 * to the threshold generate a 1; values less than the threshold generate a 0. 053 * 054 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 055 */ 056 @Reference( 057 type = ReferenceType.Inproceedings, 058 author = { "Lv, Qin", "Charikar, Moses", "Li, Kai" }, 059 title = "Image similarity search with compact data structures", 060 year = "2004", 061 booktitle = "Proceedings of the thirteenth ACM international conference on Information and knowledge management", 062 pages = { "208", "", "217" }, 063 url = "http://doi.acm.org/10.1145/1031171.1031213", 064 publisher = "ACM", 065 series = "CIKM '04" 066) 067public class LongHyperplaneL1Factory extends LongHashFunctionFactory { 068 private class Function extends LongHashFunction { 069 int dimension; 070 double shift; 071 072 Function(int ndims, MersenneTwister rng) { 073 super(rng); 074 075 Uniform uniform = new Uniform(rng); 076 077 // choose a random dimension 078 dimension = uniform.nextIntFromTo(0, ndims - 1); 079 080 // random shift 081 shift = uniform.nextDoubleFromTo(min, max); 082 } 083 084 @Override 085 public int computeHashCode(long[] point) { 086 return (point[dimension] - shift) >= 0 ? 1 : 0; 087 } 088 089 @Override 090 public int computeHashCode(SparseLongArray array) { 091 return (array.get(dimension) - shift) >= 0 ? 1 : 0; 092 } 093 } 094 095 long min = 0; 096 long max = 1; 097 098 /** 099 * Construct with the given arguments. 100 * 101 * @param ndims 102 * The number of dimensions 103 * @param rng 104 * A random number generator 105 * @param min 106 * The minimum bound of the space 107 * @param max 108 * The maximum bound of the space 109 */ 110 public LongHyperplaneL1Factory(int ndims, MersenneTwister rng, long min, long max) { 111 super(ndims, rng); 112 113 this.min = min; 114 this.max = max; 115 } 116 117 @Override 118 public Function create() { 119 return new Function(ndims, rng); 120 } 121 122 @Override 123 protected LongFVComparison fvDistanceFunction() { 124 return LongFVComparison.CITY_BLOCK; 125 } 126}