001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.geometry.transforms.check; 031 032import org.openimaj.math.geometry.point.Point2d; 033import org.openimaj.math.geometry.transforms.MatrixTransformProvider; 034import org.openimaj.math.model.Model; 035import org.openimaj.util.function.Predicate; 036 037import Jama.Matrix; 038 039/** 040 * Test whether a given model that produces a homogenous transform is 041 * orientation preserving 042 * 043 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 044 * 045 * @param <M> 046 */ 047public class OrientationCheck2D<M extends Model<Point2d, Point2d> & MatrixTransformProvider> implements Predicate<M> { 048 049 @Override 050 public boolean test(M model) { 051 final Matrix H = model.getTransform(); 052 053 // Hartley & Zisserman MVG: 054 // If the determinant of the top-left 2x2 matrix is > 0 the 055 // transformation is orientation-preserving. 056 // Else if the determinant is < 0, it is orientation-reversing. 057 final double det = H.get(0, 0) * H.get(1, 1) - H.get(1, 0) * H.get(0, 1); 058 if (det < 0) 059 return false; 060 061 return true; 062 } 063}