001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.matrix; 031 032import no.uib.cipr.matrix.NotConvergedException; 033import Jama.Matrix; 034 035/** 036 * Methods for calculating the Moore-Penrose Pseudo-Inverse 037 * 038 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 039 * 040 */ 041public class PseudoInverse { 042 /** 043 * Compute the Moore-Penrose Pseudo-Inverse. 044 * 045 * @param matrix 046 * The matrix to invert. 047 * @return the pseudo-inverse. 048 */ 049 public static Matrix pseudoInverse(Matrix matrix) { 050 final no.uib.cipr.matrix.DenseMatrix mjtA = new no.uib.cipr.matrix.DenseMatrix(matrix.getArray()); 051 no.uib.cipr.matrix.SVD svd; 052 053 try { 054 svd = no.uib.cipr.matrix.SVD.factorize(mjtA); 055 } catch (final NotConvergedException e) { 056 throw new RuntimeException(e); 057 } 058 059 final Matrix Sinv = new Matrix(matrix.getColumnDimension(), matrix.getRowDimension()); 060 061 final double[] Sarr = svd.getS(); 062 for (int i = 0; i < svd.getS().length; i++) { 063 if (Sarr[i] != 0) 064 Sinv.set(i, i, 1.0 / Sarr[i]); 065 } 066 067 final Matrix Vt = new Matrix(svd.getVt().numRows(), svd.getVt().numColumns()); 068 for (int r = 0; r < svd.getVt().numRows(); r++) { 069 for (int c = 0; c < svd.getVt().numColumns(); c++) { 070 Vt.set(r, c, svd.getVt().get(r, c)); 071 } 072 } 073 074 final Matrix U = new Matrix(svd.getU().numRows(), svd.getU().numColumns()); 075 for (int r = 0; r < svd.getU().numRows(); r++) { 076 for (int c = 0; c < svd.getU().numColumns(); c++) { 077 U.set(r, c, svd.getU().get(r, c)); 078 } 079 } 080 081 final Matrix pinv = Vt.transpose().times(Sinv).times(U.transpose()); 082 083 return pinv; 084 } 085 086 /** 087 * Compute the lower-rank approximation of the Moore-Penrose Pseudo-Inverse. 088 * 089 * @param matrix 090 * The matrix to invert. 091 * @param rank 092 * the desired rank. 093 * @return the pseudo-inverse. 094 */ 095 public static Matrix pseudoInverse(Matrix matrix, int rank) { 096 return pseudoInverse(new JamaDenseMatrix(matrix), rank); 097 } 098 099 /** 100 * Compute the lower-rank approximation of the Moore-Penrose Pseudo-Inverse. 101 * 102 * @param matrix 103 * The matrix to invert. 104 * @param rank 105 * the desired rank. 106 * @return the pseudo-inverse. 107 */ 108 public static Matrix pseudoInverse(ch.akuhn.matrix.Matrix matrix, int rank) { 109 final ThinSingularValueDecomposition tsvd = new ThinSingularValueDecomposition(matrix, rank); 110 111 final Matrix Sinv = new Matrix(tsvd.S.length, tsvd.S.length); 112 for (int i = 0; i < tsvd.S.length; i++) { 113 if (tsvd.S[i] != 0) 114 Sinv.set(i, i, 1.0 / tsvd.S[i]); 115 } 116 117 final Matrix pinv = tsvd.Vt.transpose().times(Sinv).times(tsvd.U.transpose()); 118 119 return pinv; 120 } 121}