001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.matrix.algorithm.pca; 031 032import org.openimaj.math.matrix.MatrixUtils; 033import org.openimaj.util.array.ArrayUtils; 034 035import Jama.EigenvalueDecomposition; 036import Jama.Matrix; 037 038 039/** 040 * Naive Principle Component Analysis performed by directly calculating 041 * the covariance matrix and then performing an Eigen decomposition. 042 * 043 * This implementation should not be used in general as it is expensive. 044 * The {@link SvdPrincipalComponentAnalysis} and {@link ThinSvdPrincipalComponentAnalysis} 045 * implementations are much faster and more efficient. 046 * 047 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 048 * 049 */ 050public class CovarPrincipalComponentAnalysis extends PrincipalComponentAnalysis { 051 int ndims; 052 053 /** 054 * Construct a {@link CovarPrincipalComponentAnalysis} that 055 * will extract all the eigenvectors. 056 */ 057 public CovarPrincipalComponentAnalysis() { 058 this(-1); 059 } 060 061 /** 062 * Construct a {@link CovarPrincipalComponentAnalysis} that 063 * will extract the n best eigenvectors. 064 * @param ndims the number of eigenvectors to select. 065 */ 066 public CovarPrincipalComponentAnalysis(int ndims) { 067 this.ndims = ndims; 068 } 069 070 @Override 071 protected void learnBasisNorm(Matrix m) { 072 Matrix covar = m.transpose().times(m); 073 074 EigenvalueDecomposition eig = covar.eig(); 075 Matrix all_eigenvectors = eig.getV(); 076 077 //note eigenvalues are in increasing order, so last vec is first pc 078 if (ndims > 0) 079 basis = all_eigenvectors.getMatrix(0, all_eigenvectors.getRowDimension()-1, Math.max(0, all_eigenvectors.getColumnDimension() - ndims), all_eigenvectors.getColumnDimension()-1); 080 else 081 basis = all_eigenvectors; 082 083 eigenvalues = eig.getRealEigenvalues(); 084 double norm = 1.0 / (m.getRowDimension() - 1); 085 for (int i=0; i<eigenvalues.length; i++) eigenvalues[i] *= norm; 086 087 //swap evecs 088 MatrixUtils.reverseColumnsInplace(basis); 089 090 //swap evals 091 ArrayUtils.reverse(eigenvalues); 092 } 093}