001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.matrix.algorithm.pca; 031 032import java.util.Arrays; 033 034import no.uib.cipr.matrix.NotConvergedException; 035import Jama.Matrix; 036 037/** 038 * Compute the PCA using an SVD without actually constructing the covariance 039 * matrix. This class performs a full SVD extracting all singular values and 040 * vectors. If you know apriori how many principle components (or have an upper 041 * bound on the number), then use a {@link ThinSvdPrincipalComponentAnalysis} 042 * instead. 043 * 044 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 045 */ 046public class SvdPrincipalComponentAnalysis extends PrincipalComponentAnalysis { 047 int ndims; 048 049 /** 050 * Construct a {@link SvdPrincipalComponentAnalysis} that will extract all 051 * the eigenvectors. 052 */ 053 public SvdPrincipalComponentAnalysis() { 054 this(-1); 055 } 056 057 /** 058 * Construct a {@link SvdPrincipalComponentAnalysis} that will extract the n 059 * best eigenvectors. 060 * 061 * @param ndims 062 * the number of eigenvectors to select. 063 */ 064 public SvdPrincipalComponentAnalysis(int ndims) { 065 this.ndims = ndims; 066 } 067 068 @Override 069 public void learnBasisNorm(Matrix norm) { 070 try { 071 final no.uib.cipr.matrix.DenseMatrix mjtA = new no.uib.cipr.matrix.DenseMatrix(norm.getArray()); 072 final no.uib.cipr.matrix.EconomySVD svd = no.uib.cipr.matrix.EconomySVD.factorize(mjtA); 073 074 final no.uib.cipr.matrix.DenseMatrix output = svd.getVt(); 075 076 final int dims = ndims < 0 ? svd.getS().length : ndims; 077 078 basis = new Matrix(output.numColumns(), dims); 079 eigenvalues = Arrays.copyOf(svd.getS(), dims); 080 081 final double normEig = 1.0 / (norm.getRowDimension() - 1); 082 for (int i = 0; i < eigenvalues.length; i++) 083 eigenvalues[i] = eigenvalues[i] * eigenvalues[i] * normEig; 084 085 final double[][] basisData = basis.getArray(); 086 for (int j = 0; j < output.numColumns(); j++) 087 for (int i = 0; i < dims; i++) 088 basisData[j][i] = output.get(i, j); 089 090 } catch (final NotConvergedException e) { 091 throw new RuntimeException(e); 092 } 093 } 094}