001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.matrix.algorithm.pca; 031 032import org.openimaj.math.matrix.ThinSingularValueDecomposition; 033 034import Jama.Matrix; 035 036/** 037 * Compute the PCA using a thin SVD to extract the best-n principal 038 * components directly. 039 * 040 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 041 */ 042public class ThinSvdPrincipalComponentAnalysis extends PrincipalComponentAnalysis { 043 int ndims; 044 045 /** 046 * Construct a {@link ThinSvdPrincipalComponentAnalysis} that 047 * will extract the n best eigenvectors. 048 * @param ndims the number of eigenvectors to select. 049 */ 050 public ThinSvdPrincipalComponentAnalysis(int ndims) { 051 this.ndims = ndims; 052 } 053 054 @Override 055 public void learnBasisNorm(Matrix data) { 056 ThinSingularValueDecomposition svd = new ThinSingularValueDecomposition(data, ndims); 057 basis = svd.Vt.transpose(); 058 059 eigenvalues = svd.S; 060 double normEig = 1.0 / (data.getRowDimension() - 1); 061 for (int i=0; i<eigenvalues.length; i++) 062 eigenvalues[i] = eigenvalues[i] * eigenvalues[i] * normEig; 063 } 064}