001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.matrix.similarity.processor; 031 032import org.openimaj.math.matrix.similarity.SimilarityMatrix; 033 034/** 035 * Normalise and optionally invert a {@link SimilarityMatrix}. 036 * 037 * @author Jonathon Hare (jsh2@ecs.soton.ac.uk) 038 * 039 */ 040public class NormaliseData implements SimilarityMatrixProcessor { 041 boolean invert = false; 042 043 /** 044 * Default constructor. 045 */ 046 public NormaliseData() { 047 this(false); 048 } 049 050 /** 051 * Default constructor. 052 * @param invert invert the resultant matrix 053 */ 054 public NormaliseData(boolean invert) { 055 this.invert = invert; 056 } 057 058 @Override 059 public void process(SimilarityMatrix matrix) { 060 final int rows = matrix.getRowDimension(); 061 final int cols = matrix.getColumnDimension(); 062 final double[][] data = matrix.getArray(); 063 064 double max = -Double.MAX_VALUE; 065 double min = Double.MAX_VALUE; 066 067 for (int r=0; r<rows; r++) { 068 for (int c=0; c<cols; c++) { 069 if (data[r][c] < min) { 070 min = data[r][c]; 071 } 072 if (data[r][c] > max) { 073 max = data[r][c]; 074 } 075 } 076 } 077 078 for (int r=0; r<rows; r++) { 079 for (int c=0; c<cols; c++) { 080 double norm = (data[r][c] - min) / (max - min); 081 082 if (invert) 083 norm = 1 - norm; 084 085 data[r][c] = norm; 086 } 087 } 088 } 089}