001/** 002 * Copyright (c) 2011, The University of Southampton and the individual contributors. 003 * All rights reserved. 004 * 005 * Redistribution and use in source and binary forms, with or without modification, 006 * are permitted provided that the following conditions are met: 007 * 008 * * Redistributions of source code must retain the above copyright notice, 009 * this list of conditions and the following disclaimer. 010 * 011 * * Redistributions in binary form must reproduce the above copyright notice, 012 * this list of conditions and the following disclaimer in the documentation 013 * and/or other materials provided with the distribution. 014 * 015 * * Neither the name of the University of Southampton nor the names of its 016 * contributors may be used to endorse or promote products derived from this 017 * software without specific prior written permission. 018 * 019 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 020 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 021 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 022 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 023 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 024 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 025 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 026 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 027 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 028 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 029 */ 030package org.openimaj.math.model.fit; 031 032import java.util.ArrayList; 033import java.util.List; 034 035import org.openimaj.math.model.EstimatableModel; 036import org.openimaj.math.model.fit.residuals.ResidualCalculator; 037import org.openimaj.math.util.distance.DistanceCheck; 038import org.openimaj.math.util.distance.ThresholdDistanceCheck; 039import org.openimaj.util.pair.IndependentPair; 040 041/** 042 * Example robust fitting, that simply wraps the models estimate method. Inliers 043 * and outliers are estimated by verifying the model against the data. 044 * 045 * @author Jonathon Hare 046 * 047 * @param <I> 048 * type of independent data 049 * @param <D> 050 * type of dependent data 051 * @param <M> 052 * concrete type of model learned 053 */ 054public class SimpleModelFitting<I, D, M extends EstimatableModel<I, D>> implements RobustModelFitting<I, D, M> { 055 List<IndependentPair<I, D>> inl; 056 List<IndependentPair<I, D>> outl; 057 M model; 058 059 ResidualCalculator<I, D, M> errorModel; 060 DistanceCheck dc; 061 062 /** 063 * Creates a SimpleModelFitting object to fit data to a model 064 * 065 * @param m 066 * model to fit data to 067 * @param errorModel 068 * the error model 069 * @param errorThreshold 070 * the error threshold 071 */ 072 public SimpleModelFitting(M m, ResidualCalculator<I, D, M> errorModel, 073 double errorThreshold) 074 { 075 model = m; 076 this.errorModel = errorModel; 077 this.dc = new ThresholdDistanceCheck(errorThreshold); 078 } 079 080 /** 081 * Creates a SimpleModelFitting object to fit data to a model 082 * 083 * @param m 084 * model to fit data to 085 * @param errorModel 086 * the error model 087 * @param dc 088 * the error/distance check that determines whether a point is 089 * valid 090 */ 091 public SimpleModelFitting(M m, ResidualCalculator<I, D, M> errorModel, DistanceCheck dc) 092 { 093 model = m; 094 this.errorModel = errorModel; 095 this.dc = dc; 096 } 097 098 @Override 099 public List<? extends IndependentPair<I, D>> getInliers() { 100 return inl; 101 } 102 103 @Override 104 public List<? extends IndependentPair<I, D>> getOutliers() { 105 return outl; 106 } 107 108 @Override 109 public boolean fitData(List<? extends IndependentPair<I, D>> data) { 110 if (!model.estimate(data)) 111 return false; 112 113 errorModel.setModel(model); 114 115 inl = new ArrayList<IndependentPair<I, D>>(); 116 outl = new ArrayList<IndependentPair<I, D>>(); 117 118 for (int i = 0; i < data.size(); i++) { 119 if (dc.check(errorModel.computeResidual(data.get(i)))) 120 inl.add(data.get(i)); 121 else 122 outl.add(data.get(i)); 123 } 124 125 return true; 126 } 127 128 @Override 129 public M getModel() { 130 return model; 131 } 132 133 @Override 134 public int numItemsToEstimate() { 135 return model.numItemsToEstimate(); 136 } 137}